Qianlin Liang

165 Brittany Manor Drive, Amherst, MA, 01002 qliang@cs.umass.edu • (413) 404-8659 • https://qianlin404.github.io/

EDUCATION University of Massachusetts, Amherst, MA, USA

Ph.D in Computer Science

- Research Direction: Distributed Systems, Cloud Computing, Edge Computing, Sustainable Computing, AI Systems
- Thesis: Rethinking the Systems and Paradigms for Cloud and Edge AI Workloads
- Expected Graduation Date: July, 2024

M.S. in Computer Science

Cumulative GPA: 3.94/4.00

The Pennsylvania State University, University Park, PA, USA

B.S.(Hons.) in Computer Science

- Minor in Mathematics
- Thesis: A Study of Price and Capacity Trade-Offs of Replicating Computation on the Public Cloud
- Cumulative GPA: 3.91/4.00

University of Massachusetts, Amherst

Research Assistant in the Laboratory for Advanced Software Systems Aug. 2018 – Present Advisor: Prashant Shenoy

Advancing and transitioning the scientific foundations of performant and resilient intelligent computational and sensing services, tailored for the future tactical network edge and cloud

- Developed novel mechanisms to optimize performance and energy efficiency for Graphics Processing Unit (GPU) deployment around machine learning models
- Designed and implemented systems to provide timeliness, adaptability, fairness and energy efficiency for inference serving of ML models, utilizing state-of-the-art tools and technologies, such as PyTorch, Nvidia Triton, TensorRT, ONNX, and TVM
- Designed and trained adaptive DNN models to dynamically optimize performance, energy efficiency, and accuracy
- Developed performance model and resource management algorithms for edge cloud with specialized hardware accelerators to improve their utilization while meeting applications SLOs
- Designed a distributed machine learning inference system for resilience and fault tolerance in dynamically changing adversarial environments
- Published project findings in prestigious conferences and journals such as SEC, IoTDI, TAAS, and **IISWC**

Advancing sustainable computing with a software-defined energy virtualization layer for targeted energy and carbon management, promoting carbon efficiency at multiple geographical scales

- Developed a virtual energy system enabling application-level grid carbon monitoring and control of server power and battery usage
- Designed and implemented a sustainable cloud resource management system to decarbonize large-scale clusters for distributed ML training, using Kubernetes CRDs and customized controllers
- Developed an online tool for pre-deployment analysis of workloads' carbon footprint through discrete-event simulation
- Published project findings in prestigious conferences, including ASPLOS and SIGMETRICS

The Pennsylvania State University, University Park

Undergraduate Research Assistant in Computer Systems Lab May 2015 - May 2016 Advisor: Bhuvan Urgaonkar

Improving the cost-efficacy of public cloud

- Analyzed Amazon EC2 Spot market history price and developed statistic model to predict EC2 Spot market price
- Implemented controller to launch, terminate and run jobs on EC2 instances programmactically
- Designed and implemented algorithm for EC2 users to lessen their cost while maintaining high reliability
- Published project findings in prestigious conferences and workshop, including EuroSys and ICPE

ACADEMIC **EXPERIENCE**

Aug. 2012 - May 2016

Aug. 2018 - Present

Aug. 2018 - Dec. 2020

INDUSTRY EXPERIENCE

Adobe Research

Research Scientist Intern in System Technology Lab

Performance engineering for machine learning inference workloads on heterogeneous GPUs in the cloud

- Evaluated the performance impact of various optimization stages within the pipeline for different DNN models on GPUs
- Conducted comprehensive profiling of diverse DNN models under varied GPU resource allocations using MPS, gathering detailed performance data for analysis
- Designed and implemented an analytic system using a novel Graph Neural Network (GNN)-based approach to estimate DNN inference latency across various GPU resource allocations

Shanghai Rajax Information Technology Co., Ltd

Data Scientist

Aug. 2016 - May 2018

Collaborate with the operations team and work towards shipping robust AI solutions

- Designed and trained machine learning models to accurately predict the delivery capacity, using TensorFlow and Scikit-learn
- Designed supply and demand pricing model to improve service quality during peak time
- Developed algorithms to cluster operating area and improve operating efficacy and efficiency

PUBLICATIONS

- [1] Walid Hanafy, **Qianlin Liang**, Noman Bashir, Abel Souza, David Irwin, Prashant Shenoy. Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions, In *Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems (ASPLOS)*, *San Diego, CA, May 2024*
- [2] Walid Hanafy, **Qianlin Liang**, Noman Bashir, David Irwin, Prashant Shenoy. CarbonScaler: Leveraging Cloud Workload Elasticity for Optimizing Carbon-Efficiency, In *Proceedings of ACM Special Interest Group on Measurement and Evaluation (SIGMETRICS), 2024.*
- [3] **Qianlin Liang**, Walid Hanafy, Noman Bashir, David Irwin, Prashant Shenoy. Energy Time Fairness: Balancing Fair Allocation of Energy and Time for GPU Workloads, In *Proceedings of ACM/IEEE Symposium on Edge Computing (SEC) 2023*.
- [4] **Qianlin Liang**, Walid A. Hanafy, Noman Bashir, Ahmed Ali-Eldin, David Irwin, Prashant Shenoy. Dělen: Enabling Flexible and Adaptive Model-serving for Multi-tenant Edge AI. In *Proceedings* of *IEEE/ACM Eighth International Conference on Internet-of-Things Design and Implementation* (IoTDI), San Antonio May 2023.
- [5] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, **Qianlin Liang**, David Irwin, Prashant Shenoy. Ecovisor: A Virtual Energy System for Carbon-Efficient Applications. In *Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems (ASPLOS), Vancouver, Canada, March 2023.*
- [6] **Qianlin Liang**, Walid A. Hanafy, Ahmed Ali-Eldin, Prashant Shenoy. Model-driven Cluster Resource Management for AI Workloads in Edge Clouds. In *ACM Transactions on Adaptive andAutonomous Systems (TAAS) Jan 2023*.
- [7] **Qianlin Liang**, Prashant Shenoy, David Irwin. AI on the Edge: Rethinking AI-based IoT Applications Using Specialized Edge Architectures. In *Proceedings of IEEE International Symposium on Workload Characterization, October 2020.*
- [8] Cheng Wang, Bhuvan Urgaonkar, Aayush Gupta, **Qianlin Liang**, and George Kesidis. Exploiting Spot and Burstable Instances for Improving the Cost-efficacy of In-Memory Caches on the Public Cloud. In *Proceedings of the European Conference on Computer Systems (EUROSYS 2017), Belgrade, Serbia, April 2017.*
- [9] Cheng Wang, **Qianlin Liang**, and Bhuvan Urgaonkar. An Empirical Analysis of Amazon EC2 Spot Instance Features Affecting Cost-effective Resource Procurement. In *ACM/SPEC International Conference on Performance Engineering (ICPE 2017)*, L'Aquila, Italy, April 2017.
- [10] **Qianlin Liang**, Cheng Wang, and Bhuvan Urgaonkar. Spot Characterization: What are the Right Features to Model? In *Proceedings of the First International Workshop on System Analytics and Characterization (SAC 2016), co-located with ACM SIGMETRICS 2016, Antibes Juan-les-pines, France, June 2016.*

CONFERENCE PRESENTATIONS	 Energy Time Fairness: Balancing Fair Allocation of Energy and Time for GPU Workload presentation delivered at ACM/IEEE Symposium on Edge Computing (SEC) Wilmington, DE 2023. Dělen: Enabling Flexible and Adaptive Model-serving for Multi-tenant Edge AI. Oral prodelivered at the 8th ACM/IEEE Conference on Internet of Things Design and Implementation San Antonio, TX, May 11, 2023. AI on the Edge: Rethinking AI-based IoT Applications Using Specialized Edge Architectu presentation delivered at IEEE International Symposium on Workload Characterization (IIS 29, 2020. 	E, Dec 06, esentation n (IoTDI), <i>res.</i> Oral
TEACHING EXPERIENCE	 Mentored graduate students, guiding them in identifying research problems, facilitating progress, and successfully completing their independent studies Reasoning Under Uncertainty (COMPSCI 240) 	ring 2020 Fall 2018
AWARDS	 The Evan Pugh Scholar Award, The Pennsylvania State University For undergraduate juniors and seniors who are in the upper 0.5 percent of their respective classes. 	2015
	 The President Sparks Award, The Pennsylvania State University For earning a 4.00(A) cumulative grade point average based on at least 36 graded credits. 	2014
	 The President's Freshman Award, The Pennsylvania State University For earning a 4.00(A) cumulative grade point average based on at least 12 graded credits. 	2013
SKILLS	 Programming Languages: Python, C/C++, Golang, Rust, JavaScript, HTML5, Bash, LaTeX Machine Learning Frameworks: TensorFlow, PyTorch, TensorRT, Nvidia Triton Data Science Frameworks: Numpy, Pandas, Scikit-learn Operating Systems: UNIX/Linux, OS X, Windows 	

Cloud Computing Tools: Docker, Kubernetes, AWS, Ansible