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1. INTRODUCTION
Amazon EC2 has been offering spot instances [2] since

2009 and a large segment of its “tenant”workloads has come
to embrace these [6]. The appeal of spot instances lies in
their low prices - up to one-tenth of the prices of on-demand
instances of equivalent (advertized) capacities. Unlike an
on-demand instance, whose price changes very slowly (over
months or years), a spot instance has a highly dynamic price
that may change as frequently as once every few minutes.
To procure a spot instance, a tenant needs to place a bid
in the concerned marketplace. Following this, whenever the
dynamic price for the requested type of spot instance (simply
the spot price henceforth) falls below the bid, an instance is
allocated to the tenant. However, when the bid falls below
the spot price, a warning is issued to the tenant following
which the instance is reclaimed/revoked by EC2. The tenant
may choose to use this warning period (2 minutes as of this
writing) to save all or some of that instance’s state. From a
tenant’s point of view, a spot instance is a virtual machine
(VM) that is cheaper than its on-demand counterpart but
appears to have poorer availability.
To benefit from the low prices of spot instances, a tenan-

t must effectively deal with two sources of complexity: (i)
it must predict relevant aspects of spot price, and (ii) it
must combine these predictions with its application-specific
trade-offs 1 to devise online instance procurement algorithm-
s. Both these issues have received a lot of attention recently.
In this paper, our focus is on (i). Our findings also have
implications for (ii) and will inform our future work as we
discuss in Section 4.
A key challenge in using spot instances, as already identi-

fied by many recent papers, is the poor predictability of spot
prices. Researchers have proposed prediction techniques
for spot prices with varying degrees of modeling complex-
ity. Among the simpler ones are techniques based on (dy-
namically updated) empirical probability distributions [3, 4,
7]. More sophisticated techniques based on auto-regressive
time-series [1, 8, 10], Markovian models [9, 5], etc., have
also been proposed. A key requirement for cost-effective
procurement of a spot instance is the ability to predict its
service contiguity, i.e., the contiguous duration for which it
is likely to be available. Regardless of the modeling tech-
nique used, all existing approaches (to our knowledge) are
based on creating a statistical model for the raw spot price
itself (with underlying assumptions about its stationarity).

1
These trade-offs would be between costs, on the one hand, and over-

heads of possible revocations (either in the form of fault-tolerance
mechanisms or loss of performance/correctness), on the other.

We believe this to be an untenable exercise because our ex-
tensive analysis of spot price traces indicates that these are
best considered non-stationary. For example, Figure 1 shows
that the first two moments of spot price for many different
marketplaces vary significantly over a 90-day period. Since
existing techniques are based on modeling raw spot prices
directly (despite their high dynamism), they are either inef-
fective or computationally non-scalable when used in online
control wherein the prediction of some other properties of
spot prices (rather than mere raw values) are desired.
What Should be Modeled? Rather than modeling the
exact spot price values, we argue that the focus should be
on the features we identify below.

• Feature I: Since spot prices tend to be significantly small-
er than on-demand prices (of equally-sized VMs) during
periods when a bid is successful, and since EC2 charges a
tenant based on the spot price during such periods (not
based on the bid), attempting to predict spot prices very
accurately is of little value. A visual inspection of the 90-
day long spot price time-series in Figure 1 and how these
prices compare with a bid that equals to the on-demand
price clarifies this. In particular, it suffices that we predict
the average spot price during such periods with reasonable
accuracy (since that is what will determine our costs).

• Feature II: Tenants want the spot instance to be available
for long enough time to maintain the service contiguity,
i.e., they are interested in how long a successful bid is likely
to last. An effective predictor should not overestimate this
quantity - doing so may render a control scheme overly
optimistic in its estimation of the cost vs. performance
trade-off.

• Feature III: The raw cross-correlations among markets,
used by prior works [7, 4] to capture simultaneous bid
failures, may not be informative for decision-making. As
we will show in Section 2.2 and 3.2, simultaneous bid fail-
ures crucially depend on the chosen markets and bids.

The rest of this paper is organized as follows. In Section 2,
we present our prediction approach. In Section 3, we evalu-
ate proposed approach with extensive real-world traces. We
discuss future directions and conclude in Section 4.
2. OUR APPROACH

We model as a random variable L(b) the length of a con-
tiguous period during which the spot price is less than or e-
qual to a bid b. In other words, L(b) captures the lifetime of
a spot instance using bid b. We denote as p̄(b) = E[pt|L(b)]
a random variable for the average spot price pt during a pe-
riod when the bid b is successful, which serves to estimate
the cost of a spot instance procured by placing a bid b.
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Figure 1: Sample spot price timeseries collected during the 90-day period (2015-07-08 to 2015-10-06) and are chosen due to their very
different properties. The green “*” and error bars represent the moving average and standard deviations over each 2-day interval.
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Figure 2: Key ideas under-
lying our prediction.

Our technique employs
empirical probability distri-
butions computed over re-
cent sliding time windows
(H most recent time slots,
e.g., days) for making pre-
dictions of L(b) and p̄(b).
H must be chosen such
that temporal locality2 hold-
s for these quantities. Fig-
ure 2 clarifies these quanti-
ties. Large L(b) and small
p̄(b) imply long service continuity and low costs, thereby en-
couraging the use of spot instances using bid b. We use a
small percentile (e.g., 5th) of the recently constructed dis-

tribution of L(b) - denoted as L̂(b) - as our prediction in the
ongoing horizon. The reasoning behind this choice is that if
the statistical properties of L(b) do not change much over
H, we expect that with a very high probability, bid b would
be successful for at least L̂(b) time units. We use average of
p̄(b) during the relevant H as its predictor (denoted as ˆ̄p(b)).
Assessment Metrics: We say that an over-estimation of
L(b) has occurred when L̂(b) > L(b). This represents a
scenario wherein the tenant was likely overly ambitious in
using spot instances. We further define L(b) over-estimation
rate as the fraction of L(b) predictions that result in over-
estimation, denoted as f(b). The assessment metric for ˆ̄p(b)
should capture the extent of its deviation from actual val-
ues. Therefore, we compute ξ(b) = (p̄(b) − ˆ̄p(b))/p̄(b) and
define as relative deviation of p̄(b) the mean value of ξ(b) for
all occurrences of p̄(b) in the relevant H. Lower values are
better for both. In Section 3, we focus on the evaluating
the right choice of history window size (for model training),
which turns out to be dependent on both the market and
the bid. None of the prior works (to our knowledge) have
analyzed these idiosyncracies.

2.2 Simultaneous revocations
When placing a bid, tenants may want to avoid picking

spot markets with the likelihood of simultaneous revocations
(the spot instances may be terminated simultaneously due
to coincident bid failures). Prior works, e.g., [7, 4], suggest
bidding across markets where there are no significant statis-
tical correlations among the “raw” history spot price traces.
However, such raw correlations might not be informative

for tenants’ decision making. Let us consider an illustrative
example in Figure 3. We generate synthetic spot prices for
two markets wherein the cross-correlation between the two

2
By temporal locality, we mean that over relatively short time-scales

(a day to a few days), the key features tend to change little, whereas
over longer time-scales (weeks to months), they might undergo more
substantial changes.

markets’ spot prices is low and the tenant might be tempt-
ed to use both markets if its decision is only based on the
raw correlation. However, it is obvious that the bid failures
from the two markets are highly correlated under bid 1 but
not correlated under bid 2. Therefore, it may be impru-
dent for the tenants to make decisions solely based on the
raw correlations without considering the actual bids. More
specifically, what the tenant really needs is measurements of
simultaneous revocations, conditioned on bids. Furthermore,
the statistical correlation of bid failures across markets may
not be very informative for decision-making regarding bid
placement. Instead, a tenant might find it more beneficial
to learn the absolute time durations of simultaneous revo-
cations, i.e., the total amount of time that a bid fails in two
candidate markets within the history window.
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Figure 3: A synthetic ex-
ample with simultaneous re-
vocations related to bids.

A more informative met-
ric that we propose is based
on characterizing simultane-
ous revocations conditioned
on pre-specified bids. Under
a given bid, we denote as A
and B the sets of time peri-
ods when the bid fails in two
spot markets under compar-
ison, respectively. Denote as
T (A) and T (B) the corre-
sponding lengths/sizes of A and B. T (A∩B) and T (A∪B)
represent the time durations of coincident bid failures and

total bid failures, respectively. T (A∩B)
T (A∪B)

reflects the proba-

bility that the bid fails in both markets when the bid al-
ready fails at one market. It is informative to look at both

the durations of bid failures (e.g., T (A)) and T (A∩B)
T (A∪B)

when

comparing markets. E.g., even if T (A) and/or T (B) are
relatively small compared with the history window size, if
T (A∩B)
T (A∪B)

is high, which implies markets (A,B) almost always

fail together under the given bid, it may be better not to
place bids in markets (A,B) simultaneously. On the other

hand, even if both T (A∩B)
T (A∪B)

and T (A∩B) are small, we may

use neither A nor B if L(b) is also small in both markets.
Therefore, tenants can use such metrics, together with pre-
dicted L(b) and p̄(b), to get a better understanding of the
properties of simultaneous revocations and carry out cost
analysis. We show initial results and insights in Section 3.

3. EVALUATION AND LESSONS
Experiment Setup: We evaluate our technique with dozen-
s of spot price traces of which we show four 90-day spot price
traces for VM types of m3.large and c3.large in availability
zones us-east-1c and us-east-1d in Figures 1. We denote
as m3.large-c the spot market for m3.large in us-east-1c

(same notation rule for other markets). For each trace, we
pick bid b from {0.5d, d, 2d, 5d, 10d}, where d is the corre-



sponding on-demand price.

3.1 Evaluation of Our Prediction Technique
We vary VM types, markets, bids, history window size

H and show the assessment metrics f (L(b) over-estimation
rate) and ξ (p̄(b) relative deviation) in Table 1.
Validation of prediction. Under most of (market, bid)
pairs, the optimal (lowest) f and ξ are below 10%, which
demonstrates the good predictive power of our technique.
For c3.large-c, f and ξ are much higher than those from
other markets; therefore, it might be better not to use this
market temporarily until its predictability gets improved.
What is the the right choice for history window size?
We observe that (i) H = 7 days seem to be the best choice
(minimized f and ξ) cases we examine, (ii) the optimal H
varies across markets and bids, implying the necessity for
considering different markets separately when determining
history window size, instead of blindly choosing a window
size that has to work for all markets, and (iii) changing bid
values may not affect f and ξ much (e.g., m3.large-c), possi-
bly due to the fact that the L(b) and p̄(b) do not vary much
when spot price exceeds bid price.

BID f(b) ξ(b)
H 7 14 21 28 7 14 21 28

m
3
.l
a
rg
e-
c 0.5d 0.1154 0.1237 0.1333 0.1446 0.0796 0.0814 0.0849 0.0902

1d 0.0698 0.0759 0.0833 0.0923 0.0689 0.0698 0.0988 0.1066
2d 0.0241 0.0263 0.0290 0.0323 0.0882 0.0960 0.1032 0.1119
5d 0.0241 0.0263 0.0290 0.0323 0.0882 0.0960 0.1032 0.1119
10d 0.0241 0.0263 0.0290 0.0323 0.0882 0.0960 0.1032 0.1119

m
3
.l
a
rg
e-
d 0.5d 0.1018 0.0692 0.0724 0.0759 0.0619 0.0576 0.0756 0.0665

1d 0.1037 0.0625 0.0661 0.0702 0.0727 0.0742 0.0908 0.0900
2d 0.0984 0.0783 0.0926 0.0990 0.0989 0.1040 0.1099 0.1218
5d 0.1316 0.1215 0.1400 0.1613 0.0907 0.1230 0.1195 0.1282
10d 0.0727 0.0777 0.0833 0.0899 0.1921 0.1862 0.1698 0.1696

c3
.l
a
rg
e-
c 0.5d 0.1007 0.0909 0.0783 0.0841 0.0586 0.0696 0.1320 0.0000

1d 0.1226 0.1717 0.1868 0.2024 0.1120 0.1576 0.1856 0.2097
2d 0.1442 0.1753 0.1910 0.2073 0.1097 0.1576 0.1854 0.2092

5OD 0.1359 0.1667 0.1818 0.1975 0.1272 0.1621 0.1758 0.1942
10OD 0.0000 0.0000 0.0000 0.0000 0.8728 0.7562 0.7294 0.7009

c3
.l
a
rg
e-
d 0.5d 0.0989 0.0833 0.0909 0.1000 0.0553 0.0629 0.0687 0.0677

1d 0.0581 0.0633 0.0694 0.0923 0.0725 0.1081 0.1070 0.1013
2d 0.0588 0.0641 0.0704 0.0781 0.0725 0.1031 0.1020 0.0993
5d 0.0588 0.0641 0.0704 0.0781 0.0729 0.1041 0.1029 0.1003
10d 0.0000 0.0000 0.0000 0.0000 0.3374 0.2172 0.1772 0.1642

Table 1: The assessment metrics f(b) and ξ(b) under different
bid values and history window sizes (H in days). The shaded cells
represent the optimal window size that minimizes f(b) and ξ(b).
“-c” and “-d” represent the markets.

3.2 Simultaneous Revocations
We show some initial results on simultaneous revocations

in Table 2. We have several insights: (i) Increasing bid may
de-correlate bid failures: even if spot prices of two market-
s always jump simultaneously, they don’t usually reach the
same high spot price. When the bid increases, one of the
markets may experience less bid failures whereas the oth-
er remains unaffected (possibly because the bid is not high
enough). (ii) Increasing bid may also increase the the ex-
tent to which the simultaneous revocation occurs, e.g., as
the total failure time T (A∪B) decreases in markets (b,d) of
m3.xlarge, the fraction of time that concurrent bid failure
occurs becomes less. (iii) Since the properties of simulta-
neous revocations highly depend on markets and bids (and
possibly also history window size), simply comparing the raw
statistical correlations of multiple markets’ spot prices may
not suffice and might even lead to faulty decision making.

4. DISCUSSIONS AND FUTURE DIRECTION
What is the right percentile for prediction? Recal-
l that we use a percentile of L(b) in the history window as
our prediction. As this percentile decreases, we may be more

Bid d 5d
A B A ∩B A∩B

A∪B
A B A ∩B A∩B

A∪B

m
3
.l
a
rg
e

b,c 1386 35 6 0.0042 900 6 6 0.0067
b,d 1386 1730 218 0.0752 900 1489 161 0.0723
b,e 1386 4517 51 0.0087 900 0 0 0.0000
c,d 35 1730 24 0.0138 6 1489 0 0.0000
c,e 35 4517 0 0.0000 6 0 0 0.0000
d,e 1730 4517 329 0.0556 1489 0 0 0.0000

m
3
.x
la
rg
e

b,c 7050 0 0 0.0000 376 0 0 0.0000
b,d 7050 1070 377 0.0487 376 774 160 0.1616
b,e 7050 9 0 0.0000 376 9 0 0.0000
c,d 0 1070 0 0.0000 0 774 0 0.0000
c,e 0 9 0 0.0000 0 9 0 0.0000
d,e 1070 9 0 0.0000 774 9 0 0.0000

c3
.l
a
rg
e

b,c 1103 2340 976 0.3956 1059 2274 921 0.3818
b,d 1103 1200 910 0.6533 1059 1194 875 0.6350
b,e 1103 284 229 0.1978 1059 279 224 0.2011
c,d 2340 1200 1189 0.5057 2274 1194 1184 0.5184
c,e 2340 284 238 0.0997 2274 279 228 0.0981
d,e 1200 284 238 0.1910 1194 279 233 0.1879

c3
.2
x
la
rg
e

b,c 1589 3917 946 0.2075 511 1152 18 0.0109
b,d 1589 14 3 0.0019 511 0 0 0.0000
b,e 1589 756 0 0.0000 511 0 0 0.0000
c,d 3917 14 0 0.0000 1152 0 0 0.0000
c,e 3917 756 0 0.0000 1152 0 0 0.0000
d,e 14 756 0 0.0000 0 0 0 0.0000

Table 2: Simultaneous revocations across different pairs of mar-
kets (b,c,d,e) and under different bids. The measurements are in
minutes. The T (.) operator is omitted for space.
conservative in using spot instances and therefore the cost
might be much higher than the optimal costs (with perfect
knowledge of L(b) and p̄(b)). As the percentile increases we
are tempted to use spot instances more aggressively, whereas
the application performance might degrade beyond the ac-
ceptable range due to bid failures. Solving this problem re-
quires a good understanding of the tradeoffs of performance
vs. resource allocation vs. costs. How to tune the parame-
ters cost-effectively with acceptable performance remains an
open problem and is worth exploring.
How to use our prediction approach effectively? Our
prediction model can be incorporated with online optimal
control or heuristics for tenants’ cost-effective resource pro-
curement. As a concrete example, a tenant can use our
model of simultaneous revocations to choose spot markets
with less/un-correlated failures under pre-specified bids. An
optimization-based (or heuristic-based) algorithm with per-
formance overhead due to bid failures (as a function of L(b))
and estimated costs (as a function of p̄(b)) can be used online
to exploit the tradeoff between performance and costs.
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