
AI on the Edge: Rethinking AI-based IoT Applications Using
Specialized Edge Architectures

Qianlin Liang
University of Massachusetts, Amherst

qliang@cs.umass.edu

Prashant Shenoy
University of Massachusetts, Amherst

shenoy@cs.umass.edu

David Irwin
University of Massachusetts, Amherst

irwin@ecs.umass.edu

ABSTRACT
Edge computing has emerged as a popular paradigm for supporting
mobile and IoT applications with low latency or high bandwidth
needs. The attractiveness of edge computing has been further en-
hanced due to the recent availability of special-purpose hardware to
accelerate specific compute tasks, such as deep learning inference,
on edge nodes. In this paper, we experimentally compare the benefits
and limitations of using specialized edge systems, built using edge
accelerators, to more traditional forms of edge and cloud comput-
ing. Our experimental study using edge-based AI workloads shows
that today’s edge accelerators can provide comparable, and in many
cases better, performance, when normalized for power or cost, than
traditional edge and cloud servers. They also provide latency and
bandwidth benefits for split processing, across and within tiers, when
using model compression or model splitting, but require dynamic
methods to determine the optimal split across tiers. We find that
edge accelerators can support varying degrees of concurrency for
multi-tenant inference applications, but lack isolation mechanisms
necessary for edge cloud multi-tenant hosting.

1 INTRODUCTION
Edge computing has recently emerged as a complement to cloud
computing for running online applications with low latency or high
bandwidth needs [33]. Internet of Things (IoT) and mobile applica-
tions are particularly well-suited for the edge computing paradigm,
since they often produce streaming data that requires real-time anal-
ysis and control, which can be optimally performed at the edge.

Conventional edge computing comes in many different flavors.
Cloudlets [34] represent one popular paradigm of edge computing
that entails deploying server clusters at the end-points of the network;
by deploying traditional servers at the edge, cloudlets enable “server-
class” applications to be deployed at the edge rather than the cloud.
Edge gateways represent a different flavor of edge computing that
involves deploying embedded nodes, individually or in groups, to
serve as the hub for applications such as smart homes. Such edge
gateways provide more limited compute capabilities at the edge, but
nevertheless provide useful functionality, such as data aggregations
and local on-node processing for certain low-latency tasks.

These two flavors of edge computing offer very different trade-
offs. The latter paradigm utilizes small form-factor hardware (e.g.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, ,
© 2020 Association for Computing Machinery.

Raspberry Pi-class nodes), has low cost, low power consumption
and also constrained compute capabilities, which increases reliance
on the cloud. Cloudlet-style edge computing, on the other hand,
provides much greater compute capabilities at the edge, but incurs
higher hardware costs, larger form factor servers, and higher power
consumption; there is also less reliance on the cloud for many appli-
cations.

Recently a third flavor of edge computing has emerged that com-
bines the key advantages of both paradigms. This paradigm, which
we refer to as specialized edge architectures, has become possible
with the advent of special-purpose hardware designed to accelerate
specific compute- or I/O-intensive operations. In particular, a num-
ber of edge hardware accelerators, such as Intel’s Movidius Vision
Processing Unit (VPU) [20], Google’s Edge Tensor processing Unit
(TPU) [14], Nvdia’s Jetson Nano and TX2 edge GPUs [28, 29], and
Apple’s Neural Engine have emerged recently. These accelerators are
explicitly designed, and marketed by their vendors, for edge comput-
ing, with the specific goal of supporting edge-based AI applications
such as computer vision, visual and speech analytics, and deep learn-
ing inference. By customizing silicon to a single, or a small, class
of applications, these hardware accelerators claim to provide major
performance improvements at much lower cost and energy points
when compared to traditional general-purpose hardware. As a result,
it is now possible to embed “wimpy” edge nodes with these accel-
erators and approach the compute capabilities of general-purpose
servers (e.g., cloudlets) for specific applications.1 Figure 1 depicts
a 10 node cluster of low-end Pi-class nodes equipped with Jetson
Nano GPUs; this entire embedded GPU cluster costs about $1,500
(or approximately the cost of a single traditional server), consumes
only 90w at full GPU load, and measures 13x8x8 inches, an order of
magnitude smaller footprint than a server rack. As a result, it opens
up new possibilities for edge deployments in power-constrained or
space-constrained settings that are not feasible with conventional
flavors of edge computing.

In this paper, we address the question of how to rethink the design
of edge-based AI applications in light of specialized edge archi-
tectures? Using an empirical approach, we seek to quantitatively
understand the benefits and limitations of these architectures when
compared to more traditional edge and cloud-based systems. In par-
ticular, we seek to answer three sets of research questions: (1) What
are the price, performance, and energy tradeoffs offered by emerging
edge hardware accelerators when compared to traditional edge and
cloud computing? (2) How should modern IoT applications exploit
the distributed processing capabilities of specialized edge nodes
and the cloud by employing various types of split processing? (3)

1Of course, cloudlets can also be equipped with hardware accelerators, further enhancing
their capabilities.

1

ar
X

iv
:2

00
3.

12
48

8v
1

 [
cs

.D
C

]
 2

7
M

ar
 2

02
0

, , Qianlin Liang, Prashant Shenoy, and David Irwin

Device Power (W) Memory Cost Accelerated Workloads
Intel NCS2 VPU 1 - 2 512 MB $99 vision, imaging
Google EdgeTPU 0.5 - 2 8MB $75 any TensorFlow lite model
Nvidia Nano 5 - 10 4 GB $99 any GPU workload; AI
Nvidia TX2 7.5 8 GB $399 any GPU workload; AI

Table 1: Characteristics of edge accelerators

Figure 1: A 10-node cluster of low-power Jetson nano GPUs.

How suitable are edge accelerators for supporting concurrent edge
applications from multiple tenants?

We seek to answer these questions through the lens of a particular
class of applications—edge-based vision and speech processing—
using an experimental testbed of several different edge accelera-
tors and embedded nodes. Our results show that edge accelera-
tors can yield up to 10-100× better normalized performance, on a
performance-per-watt and performance-per-dollar basis, than general-
purpose edge servers. They also show that split processing on ma-
chine learning inference, using model compression and model split-
ting, between device-edge, edge-edge, and edge-cloud tiers can yield
significant bandwidth savings and latency benefits. Since the ben-
efit can vary by the model and workload, we also find that such
split processing must be done carefully on a per-application basis to
maximize benefits. Finally, we find that systems optimizations such
as model quantization and RAM model swapping can enhance the
degree of concurrency supported by edge accelerators but that their
lack of performance isolation and security can be a hurdle. Over-
all, our results show the significant promise for specialized edge
architectures, but also point to the need to address open research
questions to fully realize their potential.

2 BACKGROUND
In this section, we present background on cloud- and edge-based IoT
applications as well as specialized edge architectures for edge-based
AI applications.
Cloud- and Edge-based IoT Applications: Many IoT devices with
networking (e.g., WiFi) capabilities employ a two-tier cloud archi-
tecture depicted in Figure 2(a), where the device transmits data to
the cloud for processing. Examples of such IoT devices include the
Nest thermostat [25], Wemo smart switch, and LiFX smart lights.
It is also increasingly common for IoT devices to use a three-tier
architecture, depicted in Figure 2(b), that leverages both the edge and
the cloud[17]. Application processing is split between the edge and

the cloud, with the edge performing some initial processing of the
data and the cloud providing more substantive processing capabili-
ties. Battery-powered IoT devices, such as smart door locks that use
low-power wireless protocols (e.g., Bluetooth LE), employ a three
tier architecture and rely on an intermediate edge node [19, 27, 38]
to provide a gateway to the cloud. Edge computing has also shown
promise for applications, such as augmented and virtual reality (AR-
VR) [6] [43], computation offloading [3, 10] [11], and online gaming
[37], which use Cloudlet-style edge clusters with more substantial
compute capabilities to provide low latency processing.
Edge-based AI workloads: An emerging class of edge workloads,
referred to as “AI on the Edge” or edge-based AI, involves run-
ning machine learning or deep learning inference on edge nodes.
Some researchers have argued that such visual analytics and machine
learning inference on edge nodes is poised to become the “killer app”
for edge computing [2][1]. This application use case has become
promising due to the proliferation of smart cameras and smart voice
assistants that generate significant amounts of video and audio data,
which requires vision and speech processing in real time. Doing
so involves deploying previously-trained deep learning models at
the edge to perform near real-time inference or predictions on the
video and audio data. Such inference may involve tasks, such as im-
age classification or object detection in video feeds [16, 23, 40, 42]
or speech recognition from voice assistants to understand spoken
commands—all of which have low-latency and near real-time con-
straints.2

Special-purpose edge computing and edge accelerators: Special-
ized edge computing has emerged as a new paradigm in edge com-
puting with the advent of edge accelerators that target acceleration of
machine learning and deep learning inference tasks. Figures 2(c) and
(d) depict edge computing with specialized architectures, where one
or more tiers (device, edge, cloud) employ hardware accelerators.
Each tier can leverage such specialized hardware, when available,
to either boost the processing capabilities of that tier, which implies
that each tier has less reliance on higher-level tiers. Figure 2(d) is
a special case of Figure 2(c), where all application processing is
performed on the device or on the edge using specialized hardware.
In scenarios where the specialized edge is a cluster, as in Figure 1,
more than one edge node may be leveraged for distributed edge
processing.

Table 1 list various edge accelerators and their characteristics.
Intel’s Movidius Neural Compute Stick (NCS) employs a Vision
Processing Unit (VPU) to accelerate deep learning models for com-
puter vision tasks, such as object detection and recognition [20].

2For example, a user who uses a voice assistant to turn on a smart light bulb using a
spoken command expects the lights to turn on in near real time. Similarly, smart cameras
send real-time push notifications when they detect something suspicious in their video
feed, which requires low-latency real-time processing of video.

2

AI on the Edge: Rethinking AI-based IoT Applications Using Specialized Edge Architectures , ,

(a) Two tier (b) Three tier (c) Specialized three-tier (d) Specialized two-tier

Figure 2: Tiered architectures for IoT applications that use the device, edge, and cloud.

Google’s Edge Tensor Processing Unit (TPU) [14] can accelerate
any Tensorflow ML model inference as long as it is compatible
with the Tensorflow-lite framework. Nvidia’s edge GPUs include
the Jetson Nano GPU [28], as well as the Jetson TX2 [29] GPU,
which are both designed to provide full-fledged GPU capabilities on
low-end edge nodes with a smaller power footprint than desktop- and
server-class GPUs. From a power standpoint, Nvidia’s Jetson Nano
uses a default power budget of only 5W, which is up to 40× lower
than desktop-class GPUs, while Google’s TPU uses a power budget
of only 2W. From a performance standpoint, all of these hardware
accelerators promise large performance improvements for low-end
edge nodes and, in some cases, server-like performance, even when
running on low-end Raspberry PI-class nodes. Specialized hardware
is also becoming available for end-devices, which allows the pro-
cessing to be done on the device itself, when appropriate, rather
than sending data to edge or cloud servers. Examples include the
Sparkfun Tensorflow-lite hardware board for micro-controller-based
IoT devices [12] and the GAP8 IoT processor [35]
Split processing: Edge architectures have been employed for var-
ious forms of distributed processing, with application processing
split within and across tiers. Processing may be split across device,
edge and cloud tiers by leveraging specialized hardware at each tier,
yielding vertical splitting. Processing at each tier can be further split
across nodes within that tier to leverage multiple hardware accel-
erators, yielding horizontal splitting. Model compression [36] and
model splitting [22] are examples of distributed ML inference that
use such split processing.

3 EXPERIMENTAL METHODOLOGY
Problem statement: The goal of our work is to empirically study
the feasibility of using a hardware-accelerated specialized edge tier
to provide “server-class” performance of cloudlet-style edge servers
at the cost, power, and form-factor of Pi-class edge nodes, with
a specific emphasis on edge-based AI workloads. To do so, our
study addresses the following questions: (1) What are the price,
performance, and energy benefits, if any, offered by edge hardware
accelerators when compared to general-purpose edge and cloud com-
puting? How do specialized edge nodes compare to traditional edge
nodes with respect to raw performance and normalized performance-
per-watt and performance-per-dollar? How do these benefits vary

with different workloads, such as image/video and audio processing,
and different deep learning models? (2) How should IoT application
exploit distributed and split processing capabilities offered at various
tiers? How are the benefits and overheads of splitting application
processing over centralized processing at a single tier? Are there sce-
narios where performing data processing at a single tier is better than
splitting application processing across tiers? (3) How capable are
these edge accelerators for supporting concurrent model execution
to provide multi-tenancy in edge clusters?
Experimental setup: Our experimental setup comprises a small
cluster of single-board computing (“Pi-class”) nodes that are equipped
with four edge accelerator platforms: Intel Movidius NCS2 VPU,
Google Edge TPU, Nvdia Jetson Nano GPU, and Nvidia TX2 GPU.
To compare with more traditional edge architectures, we also con-
sider a Raspberry Pi3 node as an example of a resource-constrained
edge device, and an x86 server with a 3.0GHz Xeon Skylake CPU
as an example of a cloudlet-style edge server. We also consider a
NVIDIA Tesla V100 GPU on Amazon EC2 p3.2xlarge cloud
instance to mimic a specialized edge server or specialized cloud
server.
Workloads: Our workload consists of three common vision-based
image processing and speech-based audio-processing tasks that arise
in many edge-based AI applications:

• Image classification: The goal of image classification is to
assign a text label (i.e., “classify”) to an image based on its
contents. For example, a label such as “apple", “dog" or “car"
may be assigned by the classifier based on the image. Typi-
cally model inference yields multiple labels with probabilities
on the likely contents of the image.

• Object detection: Object detection is a harder task than clas-
sification since it involves determining all objects of interest
that are present in the image, by computing a bounding box
around each such object, and then assigning a probabilistic
label to each object.

• Keyword spotting: Keyword spotting involves processing an
audio stream to detect and recognize the occurrence of a set
of keywords (e.g., "Hey Siri" function on iPhone).

All three workloads use deep learning models, and there has been
a wealth of research on these problems over the past decade [13].
Pre-trained deep learning models are now available for these tasks

3

, , Qianlin Liang, Prashant Shenoy, and David Irwin

Workload Model Input size Model Params # Float operations Depth
name size (MB) (M) per inference (M) multiplier

Image Classification
MobileNet V2 224 × 224 × 3 14 3.54 602.29 1.0
Inception V4 299 × 299 × 3 163 42.74 24553.87 -

Object Detection
SSD MobileNet V1 300 × 300 × 3 28 6.86 2475.24 1.0
SSD MobileNet V2 300 × 300 × 3 66 16.89 3751.52 1.0

Keyword Spotting cnn-trad-fpool3 99 × 40 3.6 0.94 410.89 -
Table 2: Characteristics of the deep learning models used in our study.

from multiple sources and these models are designed to run on a
variety of hardware and software platforms. We use these pre-trained
models for our micro-bechmarking study since it allows us to run
the same standard model on all hardware devices, and also enables
others to repeat our experiments. Our experiments use the following
5 models: MobileNet V2 and Inception V4 for image classification,
SSD MobileNet V1 and SSD MobileNet V2 for object detection,
and cnn-trad-fpool3 in [32] for keyword spotting. Table 2
lists the key characteristics of the models along with the default
model configurations used in our experiments.

4 PERFORMANCE AND ENERGY
MICROBENCHMARKS

Our first experiment involves comparing raw and normalized per-
formance and power of specialized edge nodes to more traditional
edge architectures comprising (i) resource-constrained edge nodes
(Pi3), (ii) x86 server-based edge nodes (“cloudlet server”), and (iii)
GPU-equipped x86 servers. We microbenchmark various edge nodes
under our three workloads (classification, object detection and key-
word spotting) and the corresponding models shown in Table 2 and
measure throughput and power consumption under these workloads.
Methodology: To ensure a fair comparison across hardware plat-
forms, we run the same model on all platforms and subject it to
the same inference workload. For object classification and object
detection, we use the CAVIAR test case Scenarios dataset [31] as
our inference workload. For keyword spotting, we use the Speech
Commands dataset [4] as our inference workload. Although the
model and the inference workload used to drive the model are iden-
tical on all platforms, it should be noted that the deep learning (DL)
software platform used to execute this model varies by device. This
is because there is no single DL software platform that runs well on
all hardware accelerators. While TensorFlow runs on many of our
devices, we found that it almost always had worse performance than
the native vendor-designed tool for running DL inference.

Thus, we choose the native vendor-recommended software DL
platform for each device since it yields the maximum throughput
and best results. Specifically, we use Intel Openvino [7] for the Intel
VPU, the specialized edgetpu software module for Google’s Edge
TPU, and TensorRT [8] for Nvidia’s Jetson Nano, TX2 and cloud
GPUs. Finally, we use TensorFlow to execute our models on all
CPUs, namely Raspberry Pi3 and Intel Xeon CPU. Our through-
put microbenchmark, written in python, iteratively involves mak-
ing inferences using the above inference workloads and computes
throughput in term of inferences per second. In addition to measur-
ing sequential inference throughout, we also measure the impact of

batching inference requests on the throughput—since batching is
often used in production settings to enhance the throughput of deep
learning model inference. Our power microbenchmarks measure
the mean power consumption as well as the total energy consumed
during an individual inference request.

We use a combination of hardware and software tools for our
power microbenchmarks. For USB devices such as Intel VPU and
Google EdgeTPU, we use a USB power meter with data logging
capabilities to measure the energy used and instantaneous power con-
sumption during inference. For NVidia GPUs, we use nvidia-smi
software profiling tool that provides power statistics for NVidia
GPUs [9]. For the cloud-based Intel Xeon CPU and Raspberry Pi
CPU, we use the Turbostat Linux profiling tools [5] to measure the
CPU power usage; Turbostat also works in virtualized environments
such as cloud servers for power profiling.
Performance results: We begin with microbenchmarking our hard-
ware accelerators using the image classification workload. Figure
3 shows the throughput and power usage results for our two image
classification models: Mobilenet V2 and Inception V4. As shown
in Table 2, Inception is a more complex model that is around 7×
larger in size and parameters than Mobilenet. Figure 3(a) depicts the
mean inference throughput in terms of frames/s for various hardware
accelerators running these models; note the log scale on the y-axis
depicting throughput.

The figure yields the following observation: (1) All four edge
accelerators provide a significant increase in performance when
compared to a vanilla Pi3 edge node, yielding between 6× to 28×
throughput increase for Mobilenet and 3.4× to 70× throughput in-
crease for Inception. (2) Interestingly, some of the edge accelerators
even outperform a modern Xeon processor, which align with their
claims of “server-class” performance using low-cost hardware. Both
Nvidia GPUs outperform the x86 CPU by 1.7× to 3.5× for Mo-
bileNet and have comparable to 2× higher throughput for Inception.
The VPU is the slowest of the four and yields about half the CPU
throughput, while the TPU is 5× slower for Inception but 1.9× faster
for Mobilenet. (3) Not surprisingly, the cloud GPU still holds a sig-
nificant performance advantage over all edge accelerators with 5×
to 8× higher throughput than the fastest edge accelerator (TX2).

While the throughput microbenchmarks above assume sequential
inference requests, we next measure throughput using input batch-
ing. Batching of multiple inputs enables the hardware accelerator to
parallelize model inference, thereby increasing hardware utilization
and the resulting throughput. We vary the input batch size from 1
to 64 and measure the inference throughout for different hardware
accelerators. Figure 3(b) depicts the throughput results for the In-
ception model (results for Mobilenet are similar and omitted due to

4

AI on the Edge: Rethinking AI-based IoT Applications Using Specialized Edge Architectures , ,

(a) Throughput (b) Batch Throughput (c) Power consumption

Figure 3: (a)Throughput of edge and cloud devices for image classification. (b) The impact of batch size for edge and cloud devices
for the Inception V4 model (c) Power consumption of edge devices for the Inception V4 model. The server CPU and GPU consume
131.26W and 111.66W, respectively, for the same model.

(a) Throughput per watt (b) Throughput per unit cost

Figure 4: Normalized performance per watt and per unit cost for various devices. Unit cost data is shown in Table 1

space constraints). The figure shows that batching is very effective
for all GPUs; the throughout increases with batch size but shows
diminishing improvements beyond a batch size of 16. A batch size
of 16 yields 13.94× and 11.85× throughput increase for Jetson Nano
and TX2 GPUs, while a batch size of 64 yields 30.17× and 23.79×.
We also find that batching is not effective for the TPU or VPU.
We attribute this behavior to the smaller memory capacity of these
devices that reduces their effectiveness for batched input processing.
Power results: Finally, Figure 3(c) plots the mean power consump-
tion of various hardware devices when performing inference.3 As
noted earlier, a combination of USB power meters and Linux and
NVidia profiling tools were used to measure power usage. We also
measured the total energy consumed per inference request but omit
those results here since they directly correlate to the mean power
usage. As shown in the figure, the TPU is the most power-efficienct
device and consumes only 0.6 watts during inference, with the VPU
being the next most power efficient with a power consumption of
2 watts. The Jetson Nano and TX2 GPUs consume 4.01 and 5.08

3The plot depicts power consumption of only the accelerator or the CPU and does not
include power consumed by the rest of the node or its peripherals.

watts on average during inference. In contrast, the Tesla Cloud GPU
and the Intel Xeon CPU consume 111.66 and 131.26 watts during
inference, significantly higher than the edge accelerators.
Normalized performance: Figure 4(a) and (b) plot the normalized
throughput of various hardware devices with respect to power and
cost. The normalized metrics of performance per watt and perfor-
mance per dollar, respectively, enable a different comparison of these
devices in constrast to using raw performance or power. Figure 4(a)
plots the throughput per watt for various devices. When normalized
for power consumption, all edge accelerators outperform the x86
CPU by 10-100× and become comparable or outperform the cloud
GPU. Due to their low power consumption, the TPU and VPU offer
the highest performance per watt across all devices. Overall, the
performance per watt is 25.5 to 77% higher for the various edge
accelerators when compared to the cloud GPU for the Inception
workload. For Mobilenet, the TPU and VPU yield a 16× and 1.3×
better performance per watt than the cloud GPU, respectively. Figure
4(b) plots the throughput per dollar cost for all devices. Once again,
we see that all edge accelerators provide a higher throughput per
dollar cost than the cloud GPU and x86 CPU due to their low cost.

5

, , Qianlin Liang, Prashant Shenoy, and David Irwin

Workloads Models Pi VPU TPU Nano TX2 CPU GPU

Image Classification
MobileNet V2 3.11 19.64 85.64 43.16 89.19 43.54 729.03
Inception V4 0.27 2.99 0.93 9.23 18.91 5.36 100.11

Object Detection
SSD MobileNet V1 1.39 10.66 21.09 23.97 46.90 21.23 499.83
SSD MobileNet V2 1.10 8.37 17.90 19.64 36.34 17.44 372.74

Keyword Spotting cnn-trad-fpool3 15.85 26.65 33.31 299.98 449.15 201.33 2314.91
Table 3: Throughput in inferences per second

Even the TX2 GPU, which has a relatively high list price of $399,
yields a 1.3× better performance per dollar cost than the cloud GPU.

Next, we repeat the above experiments for the object detection
and keyword spotting workloads. Table 3 summarizes the inference
throughput obtained for various hardware devices under various deep
learning models and workloads. While there are some variations in
throughput across audio and image workload and different models,
the broad results from Figure 3 hold for these results. All edge
accelerators provide very significant throughput improvements over
low-end edge nodes, such as the Raspberry Pi, and many outperform
even a x86 server processor. Broadly, the TX2 edge GPU provides
the highest throughput across the four edge devices; performance
can be roughly ordered as VPU, TPU, Jetson Nano, and TX2 for
various workloads. The cloud GPU continues to provide the greater
raw performance across all devices, but becomes comparable or
slightly worse than the accelerators on a a normalized performance
per watt and performance per dollar basis (not shown here to due to
space constraints)—similar to the trends shown in Figure 4.
Key takeaways: On a raw performance basis, we see a rough per-
formance order across edge accelerators for inference workloads,
namely VPU < TPU < Nano < TX2. Edge accelerators provide
performance that is within one-half to 3.5× that of x86 server proces-
sors. When normalized for power and cost, edge accelerators easily
outperform traditional server processors by 10-100× and become
comparable to or better than even server GPUs. All edge accel-
erators exhibit very low power consumption, ranging from 0.6W
to 8W, which is more than an order of magnitude lower than the
server CPU and GPU. These results indicate that specialized edge
architectures are very attractive for edge applications in power or
space-constrained settings. Further, they have the potential to re-
place traditional (“cloudlet-like”) x86 edge servers for deep learning
inference workloads.

5 SPLIT PROCESSING ACROSS
APPLICATION TIERS

Next, we evaluate the benefits of hardware accelerators for dis-
tributed or split processing of edge-based AI workloads. We con-
sider both model splitting and model compression, which are the
two types of split processing that have been proposed previously but
have not studied in the context of edge accelerators.

5.1 Model Splitting
Our first method, model splitting, which is illustrated in figure 5 and
allows a deep learning model to be split across multiple nodes within
or across tiers. In sequential splitting [22], the first k layers of the n
layer model run on the first node accelerator and the remaining n −k

layers run on the next node or tier. In this case, the inference request
is initially sent to the first node and the intermediate output of the
kth layer is then sent over the network to the (k + 1)st layer running
on the second node for subsequent processing. Model splitting can
also be done in parallel, where a portion of each of the n layers
is deployed on the first node, with the remaining portions of each
layer deployed on the other node [46]. In this case, both nodes
process the input data in parallel by feeding it through the layers
of the model. Model splitting offers two possible benefits. First, in
case of sequential splitting, if the output of an intermediate layer is
smaller than the input, splitting the model at this layer consumes less
network bandwidth than sending the original input to the higher tier
for inference. Second, model splitting is also useful when the full
model does not fit into the memory of a hardware accelerator; in such
cases, the model can be split—sequentially or in parallel—across
two or more edge nodes within a tier, enabling all processing to be
performed at the edge tier even though no single accelerator can host
and run the entire model.

Our first experiment evaluates the benefits of model splitting using
sequential splitting for image classification (using our Inception V4
and MobileNet V2 models). Our experiments were performed by
splitting the model between an Edge TPU and a cloud GPU. For
each model, we systematically vary k, the layer after which the
model is split between the two nodes, and measure the size of the
intermediate output transmitted between layers k and k+1. Note that
the inference result will always be the same regardless of the chosen
k, and only the data transmitted between the split models varies
with k. We compare this overhead to the non-split model inference
where the entire model runs on a single node, and the input image
data is sent over the network to that node using (i) uncompressed
RGB format, (ii) lossless PNG compression and (iii) lossy JPEG
compression.

Figure 6(a) shows the result obtained by splitting the Inception
V4 model for image classification. As shown, the intermediate out-
put produced by each layer varies from layer to layer. Interestingly,
we find that all layers produce an intermediate output that exceeds
the size of the input data when using using lossless or lossy com-
pression to transmit the input. Only transmitting the input data in
uncompressed RGB format incurs more network overhead. Thus,
splitting at any layer will consume more bandwidth than sending
JPEG or PNG compressed images to a non-split model. This result
shows that, for Inception V4, there is no benefit from splitting the
model between the edge and the cloud tiers, and it is better to either
deploy the full model entirely on the edge tier and avoid all data
transmissions to the cloud, or deploy the model entirely in the cloud
by sending compressed inputs to the non-split model. Further, for
Inception V4, the only benefit of split processing is for handling

6

AI on the Edge: Rethinking AI-based IoT Applications Using Specialized Edge Architectures , ,

First k layers

Intermediate
output

Last n-k layers

Inference (output)

Node 1 with accelerator Node 2 with accelerator

Image input

Figure 5: Illustration of Model Splitting of a n layer model, where the first k layers of the model run on node 1 and the intermediate
output is sent to node 2 that runs the remaining (n − k) layers. Nodes 1 and 2 may reside on same tiers (e.g., edge-edge splitting) or on
different tiers (e.g., edge-cloud or device-edge splitting)

(a) Inception V4 (b) MobileNet V2

Figure 6: The intermediate output size of various layers of the models for image classification.

a large memory-footprint model that does not fit into the memory
of a single edge accelerator. In this case, we can split the model
across two (or more) edge node accelerators to accommodate it and
perform distributed inference within the edge tier using horizontal
splitting.

Figure 6(b) shows the result obtained by splitting the MobileNet
V2 model for image classification. We find that the behavior of
this model is different from the previous case. The figure shows
that most layers, except for the first two, produce intermediate out-
put that is far below the size of the input data when using lossless
compression. We find that splitting the model at layer 10 (labelled
“expanded_conv_6”) yields nearly 8× network savings over using
lossless compression for a non-split model. The maximum sav-
ings are obtained by splitting at layer 16 (“expanded_conv_13”)
with nearly an order of magnitude reduction in the used network
bandwidth. Splitting even offers benefits when compared to using
lossy JPEG compression, with layer 16 yielding 30.46% bandwidth
savings. These network bandwidth savings come with a tradeoff
however—the total latency of performing split inference on two

nodes is higher that performing a single non-split model inference,
as shown in Table 4. The table shows that the latency of vertical
splitting between the device-edge and edge-cloud tiers as well as
horizontal splitting between edge-edge is always higher than the
non-split inference latency (when using VPU, edge TPU and cloud
GPU as the accelerators for the device, edge and cloud tiers). Thus,
model splitting involves trading lower network overhead for higher
inference latency.

Split Split Latency Non-split
between Node 1 Node 2 Latency

device-edge 52.19ms 4.03ms 14.11ms
edge-edge 13.50ms 4.03ms 14.11ms
edge-cloud 13.05ms 0.50ms 1.45ms

Table 4: Inference Latency for Split vs. Non-split Model. The
MobileNet V2 model is assumed to be optimally split at layer
16. Network latency, which is the same for both, is omitted.

7

, , Qianlin Liang, Prashant Shenoy, and David Irwin

Image input

Compact model

Confidence
> T

Yes

Inference (output)

Send input

Full model

Inference (output)

Node 1 with accelerator Node 2 with accelerator

Output

No

Figure 7: Illustration of model compression. The first node runs a compact model, while the second node runs the full model; the
latter model is invoked only when the confidence of the more compact model is below a threshold value

Key takeaways: Taken together, the results above show that the
benefits of model splitting are highly model dependent. In many
cases, significant network savings can be obtained from splitting the
model across tiers in an optimal manner, but at the cost of higher
overall inference latency. In other cases, split processing is useful
only within the edge tier when the model does not fit in the memory
of a single accelerator, while splitting across tiers is not beneficial
from a network standpoint. Since the overheads and benefits will
vary from model to model, adaptive run-time techniques are needed
to analyze these overheads and determine whether to split and, if so,
an optimal split for each particular model.

5.2 Model Compression
Model compression, as illustrated in figure 7, is an alternative form
of split processing that takes a full deep learning model and con-
structs a smaller compressed version of that model with a lower
memory footprint [36]. The smaller model is deployed for perform-
ing inference on a lower tier node with less resources, while the full
model runs on a more capable higher-tier node. For example, the
small model can be deployed on the device tier with a local acceler-
ator, while the larger model runs on an edge node with accelerator
capability. Alternatively, the compressed model can be deployed on
an edge node with the full model running on a cloud server (the
difference between these two scenarios is the relative sizes of the
device-edge and edge-cloud models). In either case, inference is first
run on the compressed model; since all models produce a probability
(confidence) value along with each inference result, the method uses
a threshold parameter to determine if the output of the compressed
model is of adequate quality, in which case the output is assumed
to be final. Otherwise the input data is sent over the network to the
full model at the next tier for a second inference. Such an approach
can provide bandwidth and latency savings—if a majority of the
inference requests are handled by the compressed model, data need
not be sent to the next tier, yielding bandwidth savings, and inference
can be handled locally at lower latencies. The threshold parameter
allows for a tradeoff between accuracy, bandwidth, and latency.

We now evaluate the efficacy of model compression-based split
processing using hardware accelerators. We consider two scenarios,
a device-edge case where a very small footprint model (6.4 MB)
runs on the device tier accelerator (emulated using a VPU, which is
the slowest of our accelerators) along with a larger (13MB) model
running on the TX2 edge GPU. We also consider an edge-cloud
case where we run a medium footprint (13MB) model on the TX2

edge GPU and a larger 23 MB model on the cloud GPU. We con-
struct these models of varying size using MobileNet V2, yielding the
mobilenet_v2_0.35_96 device model, mobilenet_v2_1.0_224
edge model and mobilenet_v2_1.4_224 cloud model.

Figure 8(a) shows the accuracy of the three models on the Ima-
geNet validation dataset (obtained by comparing the inference results
with the ground truth in the dataset). As can be seen, the smaller the
compressed model, the lower its accuracy. Figure 8(b) shows the net-
work bandwidth usage for the device-edge and edge-cloud scenarios
under varying thresholds; recall that the threshold determines the
confidence level under which the input image is transmitted to the
next tier for inference by the larger model. A lower threshold implies
we are willing to accept predictions with lower confidence from the
smaller model. As can be seen, as the threshold increases, a larger
percentage of inference requests fail to meet the desired confidence
using the compressed model and require a second inference from
the larger model, which increases the network bandwidth usage.
At a threshold of 0.5, the device-edge case yields a 18% network
savings when compared to the non-split scenario; the savings for the
edge-cloud are higher at 41% since the larger edge model is able
to handle more inference requests locally than the smaller device
model of the device-edge case. The savings fall to 0.1% and 11%
for a higher threshold of 0.8 for the device-edge and edge-cloud,
respectively, and diminish asymptotically to zero as the confidence
threshold approaches 1.

Figure 8(c) shows the total latency of split processing for different
thresholds. The total latency includes the inference latency of the
compressed model, the network latency to send data to the larger
model if necessary, and the latency of the second inference if the
larger model is invoked. For the non-split case, all requests incur
network latency to send data to larger model and also include the
inference latency of the larger model. In our experiment, the mean
edge-device network latency was around 4ms and the edge-cloud la-
tency to the EC2 cloud server was 47.76ms. In contrast, the inference
latency is highest at the device VPU and lowest at the cloud GPU.
The figure shows that for lower thresholds, split processing offers
lower overall latency since the compressed model is able to pro-
duce results of “adequate” quality (i.e., above the threshold), which
avoids a network hop and a second inference by the larger model.
As the threshold increases, more results need to be sent to the larger
model since the compressed model is unable to produce results that
meet this higher confidence. This causes the overall latency of split
processing to rise due to more requests incurring a network hop and
a second inference.

8

AI on the Edge: Rethinking AI-based IoT Applications Using Specialized Edge Architectures , ,

(a) Accuracy (b) Bandwidth (c) Latency

Figure 8: Accuracy of compressed models (a) and Bandwidth and latency savings for different cut-off confidence thresholds under
model compression (b,c).

The figure also shows a cross-over point beyond which split
processing incurs higher overall latency than non-split processing—
since the overhead of two inferences is higher than performing
a single inference. We find that the cross-over point occurs at a
relatively low threshold of 0.26 for device-edge and 0.45 for edge-
cloud scenarios. This implies that when subjected to a random set of
inputs (from the Imagenet validation dataset), model compression
in not able to outperform non-split inference when high confidence
output is desired from the smaller model; model compression yields
lower latencies only when we are willing to accept lower quality
results from the compressed model.

We next consider a scenario where the inputs are not random
but skewed towards the common case. In this scenario, we assume
that the compressed model is well-trained for a small number of
frequently occurring inputs. The larger model is invoked only for
less common inputs for which the compressed model yields less con-
fident and less accurate results. This is a likely deployment scenario
for model compression where the compressed model is designed to
perform well for common case inputs that are frequent, acting as
a “filter” for such inputs; less common inputs are sent to the larger
model, which is capable of handling a much greater range of inputs,
for further processing. To evaluate such a scenario, we construct a
skewed input dataset using the Imagenet validation dataset where
common-case inputs (e.g., “car”) occur very frequently and all other
inputs (e.g., all other vehicles) occur infrequently. Figure 9 depicts
the latency of the device-edge and edge-cloud scenario for such in-
puts. As shown, model compression yields much lower latency (3×
for device-edge and 4× for edge-cloud) than non-split inference for
a wide range of threshold values—since it performs inference well
for the common case, and avoids a second inference for the majority
of the inputs. The bandwidth savings (not shown here) are similarly
higher than the non-split case for a broad range of threshold values.

Finally, we evaluate the impact of the network latency on these
benefits. While the previous experiment used actual network latency
to the EC2 cloud server, we evaluate the benefits of cloud latencies
under different emulated cloud latencies. We vary the cloud latency
from 20ms to 200ms and mesure the latency of using model com-
pression relative to the non-split case. As can be seen in Figure 10,
the higher the latency to the cloud server, the greater the benefits of
using the compressed model to perform a single local inference. For

Figure 9: Latency savings when compressed model produces
high confidence results for common case inputs.

a theshold of 0.8, 60ms cloud latency yields around 70.39% latency
reduction and 100ms cloud latency yields a 79.83% lower latency.
The figure also shows that higher thresholds yield lower benefits,
since it causes more inputs to be sent to the larger model. Finally,
for very high thresholds such as 0.99, split processing is always
worse than non-split inference, since it causes the vast majority of
the inputs to undergo inference at both the compressed and the larger
model.
Key takeaway: Unlike model splitting which offers bandwidth sav-
ings by trading off higher latency, model compression can yield
both bandwidth and latency reduction, but comes with an accuracy
tradeoff. The smaller the compressed model, the lower its ability to
perform local inference with good confidence and accuracy and the
lower the bandwidth savings from split processing. Consequently,
we find that edge-cloud split processing yield higher savings than
the device-edge case due to the larger compressed model at the edge.
The latency reductions depend significantly on the nature of the
inputs. When optimized for frequent common case inputs, model
compression can yield very good latency reduction by handling

9

, , Qianlin Liang, Prashant Shenoy, and David Irwin

Figure 10: Inference latency with varying network latency to
cloud servers.

most of the frequently occurring inputs locally using the compressed
model. The benefits of model compression also depend on the net-
work latency—the higher the latency to the cloud, the more valuable
is the ability to handle inference locally and avoid an expensive
network hop. Conversely, the closer the cloud servers, the lower are
the benefits of split processing using model compression.

6 CONCURRENCY AND MULTI-TENANCY
Our final experiment focuses on concurrency and multi-tenancy
considerations for specialized edge nodes. General-purpose nodes
are capable of executing concurrent tenant application due to OS
features, such as CPU time sharing and address space isolation. To
understand such benefits for specialized edge nodes, we conduct an
experiment to quantify the ability of hardware accelerators to run
concurrent models. To do so, we load multiple SSD MobileNet V2
models, one for each tenant, onto each of our four edge accelerators.
Each tenant application thread then invokes its loaded model for in-
ference concurrently with others. We vary the number of concurrent
models and measure the throughput of each device.

Figure 11 shows the inference throughput obtained for each hard-
ware accelerator for different degrees of concurrency. The figure
shows that all four edge accelerators are capable of supporting mul-
tiple concurrent models and provide inference throughput that is
comparable to that under a single tenant scenario. However, the
maximum degree of concurrency varies by device. Typically, the
maximum concurrency will depend at least on the device memory
size and the model size. For the SSD MobileNet V2 model used in
this experiment, the Nvidia Nano and TX2 can support a a maximum
of 2 and 4 concurrent tenants, respectively. Surprisingly, the Intel
NCS2 VPU can support 8 concurrent models despite being more
memory constrained than the GPUs. The Edge TPU has the best con-
currency features—it can arbitrarily scale the number of concurrent
models due to its ability to use the host RAM to store models that
do not fit on the device memory and its use of context switches to
swap models to and from RAM. When used in conjunction with a
Raspberry Pi3 device, we are able to scale the number of concurrent

Figure 11: Degree of concurrency supported by various device
accelerators.

models to 79 before exhausting memory. The figure shows a slow
drop in throughput as we increase the degree of concurrency due to
the increasing context switch overhead.

Further analysis revealed that the lower concurrency of the edge
GPUs is due to software overheads. Using the nvdia-smi tools,
we find that each model, despite being 66MB in size, consumes
1244MB in memory when loaded. This is because GPUs are de-
signed to be more general accelerators than the VPU and TPU, and
its TensorRT software framework is designed for more general use
and therefore more heavyweight (TensorRT libraries alone consume
600MB). In contrast, the VPU and TPU are specifically designed
for deep learning inference and the software framework is heavily
optimized for this use case, thereby imposing low overheads.

In addition to exploiting host RAM for model swapping, the edge
TPU also employs model quantization to further reduce memory
overheads. Post-training model quantization [24] is a technique to
reduce the memory footprint of the trained model—for example, by
quantizing 32bit floating point weights of the model to 8bit precision
values. The edgetpu runtime framework has quantization turned
on by default, enabling it to shrink the size of each model prior to
loading. The tradeoff though is a possible drop in accuracy of the
models due to quantization of the model weights.4

Finally, we note that none of the devices offer any isolation or
security features for concurrent tenants. Currently a tenant thread can
access models belonging to other tenants and even overwrite other
models. The lack of isolation features implies that despite supporting
concurrent model execution, the devices are not yet suitable for use
in multi-tenant edge clusters or edge clouds.

7 SUMMARY AND IMPLICATIONS OF OUR
RESULTS

In this section, we summarize our results and discuss their broader
implications. Our performance experiments revealed that edge accel-
erators provide comparable or better normalized performance than

4Frameworks such as Tensorflow provide tools to verify that any such drop in accuracy
is within tolerable limits.

10

AI on the Edge: Rethinking AI-based IoT Applications Using Specialized Edge Architectures , ,

server CPUs and GPUs, outperform server CPUs on a raw perfor-
mance basis, and consume an order of magnitude lower power for
inference workloads. Our results imply that specialized edge clusters
can potentially replace x86 edge clusters for such workloads. From
a cost standpoint, deploying a large number of edge accelerators is
no worse, but ofter better, than deploying a smaller number of more
powerful GPUs at the edge. Specialized edge nodes are especially
well suited for power and space constrained settings and open up
new possibilities that are infeasible using current architectures.

Our split processing experiments provided several interesting in-
sights. We found that model splitting across tiers can offer good
bandwidth savings (up to 4× in our experiments) but this comes
at the cost of higher overall latency due to running split inference
across a network. Even when there are no benefits to be had from
splitting models across tiers, split processing within the edge tier is
still beneficial for running large memory footprint models on con-
strained edge devices. Since the benefits are highly model dependent,
our results point to the need for run-time methods to dynamically
determine whether to split a model and how to do so optimally.

Unlike model splitting, model compression can offer both band-
width savings and lower inference latency, but only when a majority
of the inference requests can be handled by the compressed model
with high confidence and accuracy. Highly compressed models or
higher confidence thresholds diminish the benefits of model com-
pression, since they cause a higher fraction of request to incur a
network hop and a second inference. Our results also imply that the
latency benefits of model compression will diminish as the latency
to the cloud reduces gradually over time due to the ever increasing
number of geographic cloud locations.

Finally, our concurrency experiments show that the degree of
concurrency depends on the device memory, model size, framework
software overheads, and system optimizations. Higher device mem-
ory does not always translate to a higher degree of concurrency,
especially if the run-time framework is not memory-optimized. Con-
versely, devices with a small amount of memory can support a high
degree of concurrency by heavily optimizing the run-time framework
and employing optimizations, such as model swapping from the host
memory and quantization of the model parameters. However, we
find that the lack of isolation and security features between the con-
current models is a barrier for their use in multi-tenant edge cloud
environments.

8 RELATED WORK
Recent work on running deep learning applications on the edge
falls into three categories: (i) cloud-only, (ii) edge-only, and (iii)
collaborative edge-cloud. Cloud-only approaches [15, 18, 26] allow
devices or the edge to offload compute-intensive inference to the
cloud but at the expense of higher latency. In the context of edge-
only approaches, pCAMP has compared various ML frameworks
such TensorFlow, Caffe2, and MxNet on various edge devices but
without using edge accelerators [44]. There has been some initial
work on benchmarking edge accelerators. A comparative analyses of
keyword spotting audio applications on both cloud and edge devices
was performed in [4]; the study found that, for keyword spotting
audio workloads, edge devices outperform cloud devices on an en-
ergy cost per inference basis while maintaining equivalent inference

accuracy. The efficacy of running CNNs on low-cost and low-power
edge devices for low-power robotics workloads was studied in [30].
FastDeepIot[41] has studied the relationship between neural network
structures and execution time to find network configurations that
significantly improve execution time and accuracy on mobile and
embedded devices. However, unlike us, none of these above efforts
have considered split processing within or across tiers.

The notion of collaborative split processing using model splitting
or model compression has been studied in several efforts, although
not in the context of edge accelerators. Shadow Puppet[39] uses
edge caching of model results to reduce cloud processing. Several
techniques to split DNN-based model and partition them between
edge and cloud and edge to edge have also been studied. The Neu-
rosurgeon work uses automatic partitioning of DNN computation
between mobile devices and datacenters [22]. By offloading smaller
intermediate output rather than larger origin inputs, the approach
reduces network latency. Further, it run more resource-intensive por-
tions of the split model in the cloud, to reduce the mobile energy
consumption. In contrast to Neurosurgeon, which uses vertical model
splitting between the edge and the cloud, [45] proposes a framework
that adaptively partitions a CNN-based model horizontally and dis-
tributes concurrent executions of these partitions on tightly resource
constrained IoT edge clusters. Similarly, [46] proposes a dynamic
programming-based search algorithm to partition CNNs and run
them in parallel using channel and spatial partitioning. An efficient
method to train distributed deep neural networks (DDNNs) over
a distributed computing hierarchy consisting of cloud, edge, and
end-devices was proposed in [36]. This method allows the network
to make an early decision at the edge when the model confidence is
high, thereby reducing communication cost. Finally, an incremental
approach to partition, offload and incrementally build models on
servers was proposed in [21] The approach allows the server to ex-
ecute model inference before the entire model is uploaded, which
reduces inference time. However, accelerators-based splitting has
not been a focus of these efforts.

9 CONCLUSIONS
In this paper, we conducted an experimental study to evaluate the
benefits and tradeoffs of using specialized edge architectures when
compared to traditional edge architectures for running edge-based
AI applications. Our experimental study showed that today’s edge
accelerators can provide comparable, and in many cases better, per-
formance, when normalized for power or cost, than edge servers. We
found that split processing workloads can yield good bandwidth or
latency benefits, but these benefits were highly dependent on how
the splitting was done from a model and tier perspective. We found
that edge accelerators could support varying degrees of concurrency
for deep learning inference, depending on hardware and software
constraints, but lacked isolation mechanisms necessary for cloud-
like multi-tenant hosting. Overall, our study found that many open
issues still need to be addressed to fully realize the benefits of edge
accelerators.

REFERENCES
[1] Ganesh Ananthanarayanan, Victor Bahl, Peter BodÃ k, Krishna Chintalapudi,

Matthai Philipose, Lenin Ravindranath Sivalingam, and Sudipta Sinha. 2017. Real-
time Video Analytics âĂŞ the killer app for edge computing. IEEE Computer

11

, , Qianlin Liang, Prashant Shenoy, and David Irwin

(October 2017). https://www.microsoft.com/en-us/research/publication/real-time-
video-analytics-killer-app-edge-computing/

[2] Ganesh Ananthanarayanan, Victor Bahl, Landon Cox, Alex Crown, Shadi Noghabi,
and Yuanchao Shu. 2019. Demo: Video Analytics - Killer App for Edge Comput-
ing. In ACM MobiSys. https://www.microsoft.com/en-us/research/publication/
demo-video-analytics-killer-app-for-edge-computing/ ACM MobiSys Best Demo
Runner-up Award, 2019.

[3] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa. 2013. To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing. In 2013 Proceedings
IEEE INFOCOM. 1285–1293. https://doi.org/10.1109/INFCOM.2013.6566921

[4] Peter Blouw, Xuan Choo, Eric Hunsberger, and Chris Eliasmith. 2018. Bench-
marking Keyword Spotting Efficiency on Neuromorphic Hardware. CoRR
abs/1812.01739 (2018). arXiv:1812.01739 http://arxiv.org/abs/1812.01739

[5] Len Brown. 2019. turbostat - Report processor frequency and idle statistics.
https://manpages.debian.org/testing/linux-cpupower/turbostat.8.en.html.

[6] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang
Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, Daniel
Siewiorek, and Mahadev Satyanarayanan. 2017. An Empirical Study of Latency
in an Emerging Class of Edge Computing Applications for Wearable Cognitive
Assistance. In Proceedings of the Second ACM/IEEE Symposium on Edge Com-
puting (San Jose, California) (SEC ’17). ACM, New York, NY, USA, Article 14,
14 pages. https://doi.org/10.1145/3132211.3134458

[7] Intel Corporation. 2019. Intel Distribution of OpenVINO Toolkit. https://
software.intel.com/en-us/openvino-toolkit.

[8] Nvidia Corporation. 2019. NVIDIA TensorRT - Programmable Inference Acceler-
ator. https://developer.nvidia.com/tensorrt.

[9] Nvidia Corporation. 2019. NVIDIA System Management Interface. https://
developer.nvidia.com/nvidia-system-management-interface.

[10] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: Making Smartphones
Last Longer with Code Offload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (San Francisco, California, USA)
(MobiSys ’10). ACM, New York, NY, USA, 49–62. https://doi.org/10.1145/
1814433.1814441

[11] Zheng Dong, Yuchuan Liu, Husheng Zhou, Xusheng Xiao, Yu Gu, Lingming
Zhang, and Cong Liu. 2017. An Energy-efficient Offloading Framework with
Predictable Temporal Correctness. In Proceedings of the Second ACM/IEEE
Symposium on Edge Computing (San Jose, California) (SEC ’17). ACM, New
York, NY, USA, Article 19, 12 pages. https://doi.org/10.1145/3132211.3134448

[12] SparkFun Electronics. 2019. SparkFun Electronics. https://www.sparkfun.com/.
[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.
[14] Google. 2019. Edge TPU - Run Inference at Edge. https://cloud.google.com/edge-

tpu/.
[15] Google. 2019. ML Engine : Cloud Machine Learning Engine (Cloud ML Engine).

https://cloud.google.com/ml-engine/.
[16] Giulio Grassi, Victor Bahl, Giovanni Pau, and Kyle Jamieson. 2017. Park-

Master: An inâĂŞvehicle, edgeâĂŞbased video analytics service for detecting
open parking spaces in urban environments. In SEC ’17 (sec ’17 ed.).
https://www.microsoft.com/en-us/research/publication/parkmaster-vehicle-
edge-based-video-analytics-service-detecting-open-parking-spaces-urban-
environments/

[17] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter BodÃ k, Leana Gol-
ubchik, Minlan Yu, Victor Bahl, and Matthai Philipose. 2018. VideoEdge:
Processing Camera Streams using Hierarchical Clusters. In ACM/IEEE Sym-
posium on Edge Computing (SEC) (acm/ieee symposium on edge computing
(sec) ed.). https://www.microsoft.com/en-us/research/publication/videoedge-
processing-camera-streams-using-hierarchical-clusters/

[18] Amazon.com Inc. 2019. Machine Learning on AWS. https://aws.amazon.com/
machine-learning/.

[19] SmartThings Inc. 2019. SmartThings - SmartThings Hub. https://www.smartthings.
com/products/smartthings-hub.

[20] Intel. 2019. Intel Movidius Myriad X VPU. https://www.movidius.com/myriadx.
[21] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon. 2018.

IONN: Incremental Offloading of Neural Network Computations from Mobile
Devices to Edge Servers. In Proceedings of the ACM Symposium on Cloud Com-
puting (Carlsbad, CA, USA) (SoCC ’18). ACM, New York, NY, USA, 401–411.
https://doi.org/10.1145/3267809.3267828

[22] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative Intelligence Between
the Cloud and Mobile Edge. In Proceedings of ACM ASPLOS, Xian, China.

[23] Gorkem Kar, Shubham Jain, Marco Gruteser, Fan Bai, and Ramesh Govindan.
2017. Real-time Traffic Estimation at Vehicular Edge Nodes. In Proceedings of
the Second ACM/IEEE Symposium on Edge Computing (San Jose, California)
(SEC ’17). ACM, New York, NY, USA, Article 3, 13 pages. https://doi.org/10.
1145/3132211.3134461

[24] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks for
efficient inference: A whitepaper. arXiv:cs.LG/1806.08342

[25] Google LLC. 2019. Google Nest Learning Thermostat. https://store.google.com/
us/product/nest_learning_thermostat_3rd_gen.

[26] Microsoft. 2019. Machine Learning Service: Microsoft Azure. https://azure.
microsoft.com/en-us/services/machine-learning-service/.

[27] Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb
Phillips, and Eyal de Lara. 2017. Cloudpath: A Multi-tier Cloud Computing
Framework. In Proceedings of the Second ACM/IEEE Symposium on Edge Com-
puting (San Jose, California) (SEC ’17). ACM, New York, NY, USA, Article 20,
13 pages. https://doi.org/10.1145/3132211.3134464

[28] NVIDIA. 2019. JETSON NANO - Bringing the Power of Modern AI to Millions
of Devices. https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-nano/.

[29] NVIDIA. 2019. JETSON TX2 High Performance AI at the Edge. https://www.
nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/.

[30] Dexmont Peña, Andrew Forembski, Xiaofan Xu, and David Moloney. 2010.
Benchmarking of CNNs for Low-Cost , Low-Power Robotics Applications.

[31] CAVIAR project/IST 2001 37540. 2006. CAVIAR Test Case Scenarios. http:
//homepages.inf.ed.ac.uk/rbf/CAVIAR/

[32] Tara Sainath and Carolina Parada. 2015. Convolutional Neural Networks for
Small-Footprint Keyword Spotting. In Interspeech.

[33] M. Satyanarayanan. 2017. The Emergence of Edge Computing. Computer 50, 1
(Jan 2017), 30–39. https://doi.org/10.1109/MC.2017.9

[34] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. 2009. The Case for
VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing 8, 4 (Oct
2009), 14–23. https://doi.org/10.1109/MPRV.2009.82

[35] GreenWaves Technologies. 2019. Ultra-low power processor for machine learning
at very edge. https://greenwaves-technologies.com/.

[36] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. 2017. Distributed Deep
Neural Networks Over the Cloud, the Edge and End Devices. 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS) (2017),
328–339.

[37] Jeremy Hsu. 2019. How YouTube Paved the Way for Google’s Stadia Cloud
Gaming Service. https://spectrum.ieee.org/tech-talk/telecom/internet/how-the-
youtube-era-made-cloud-gaming-possible.

[38] Wink, Labs Inc. 2019. Wink | Wink Hub. https://www.wink.com/products/wink-
hub/.

[39] Srikumar Venugopal, Michele Gazzetti, Yiannis Gkoufas, and Kostas Katrinis.
2018. Shadow Puppets: Cloud-level Accurate AI Inference at the Speed and
Economy of Edge. In USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18). USENIX Association, Boston, MA. https://www.usenix.org/
conference/hotedge18/presentation/venugopal

[40] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S. Yang, and M. Satya-
narayanan. 2018. Bandwidth-Efficient Live Video Analytics for Drones Via Edge
Computing. In 2018 IEEE/ACM Symposium on Edge Computing (SEC). 159–173.
https://doi.org/10.1109/SEC.2018.00019

[41] Shuochao Yao, Yiran Zhao, Huajie Shao, Shengzhong Liu, Dongxin Liu, Lu
Su, and Tarek Abdelzaher. 2018. FastDeepIoT: Towards Understanding and
Optimizing Neural Network Execution Time on Mobile and Embedded Devices.
In Proc. 16th ACM Conference on Embedded Networked Sensor Systems (SenSys),
Shenzhen, China.

[42] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li. 2017. LAVEA: Latency-
Aware Video Analytics on Edge Computing Platform. In 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems (ICDCS). 2573–2574.
https://doi.org/10.1109/ICDCS.2017.182

[43] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Dipankar Raychaudhuri.
2017. Towards Efficient Edge Cloud Augmentation for Virtual Reality MMOGs.
In Proceedings of the Second ACM/IEEE Symposium on Edge Computing (San
Jose, California) (SEC ’17). ACM, New York, NY, USA, Article 8, 14 pages.
https://doi.org/10.1145/3132211.3134463

[44] Xingzhou Zhang, Yifan Wang, and Weisong Shi. 2018. pCAMP: Performance
Comparison of Machine Learning Packages on the Edges. In USENIX Workshop
on Hot Topics in Edge Computing (HotEdge 18). USENIX Association, Boston,
MA. https://www.usenix.org/conference/hotedge18/presentation/zhang

[45] Z. Zhao, K. M. Barijough, and A. Gerstlauer. 2018. DeepThings: Distributed
Adaptive Deep Learning Inference on Resource-Constrained IoT Edge Clusters.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
37, 11 (Nov 2018), 2348–2359. https://doi.org/10.1109/TCAD.2018.2858384

[46] Li Zhou, Hao Wen, Radu Teodorescu, and David H.C. Du. 2019. Distributing
Deep Neural Networks with Containerized Partitions at the Edge. In 2nd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 19). USENIX Association,
Renton, WA. https://www.usenix.org/conference/hotedge19/presentation/zhou

12

https://www.microsoft.com/en-us/research/publication/real-time-video-analytics-killer-app-edge-computing/
https://www.microsoft.com/en-us/research/publication/real-time-video-analytics-killer-app-edge-computing/
https://www.microsoft.com/en-us/research/publication/demo-video-analytics-killer-app-for-edge-computing/
https://www.microsoft.com/en-us/research/publication/demo-video-analytics-killer-app-for-edge-computing/
https://doi.org/10.1109/INFCOM.2013.6566921
http://arxiv.org/abs/1812.01739
http://arxiv.org/abs/1812.01739
https://manpages.debian.org/testing/linux-cpupower/turbostat.8.en.html
https://doi.org/10.1145/3132211.3134458
https://software.intel.com/en-us/openvino-toolkit
https://software.intel.com/en-us/openvino-toolkit
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://doi.org/10.1145/1814433.1814441
https://doi.org/10.1145/1814433.1814441
https://doi.org/10.1145/3132211.3134448
https://www.sparkfun.com/
http://www.deeplearningbook.org
https://cloud.google.com/edge-tpu/
https://cloud.google.com/edge-tpu/
https://cloud.google.com/ml-engine/
https://www.microsoft.com/en-us/research/publication/parkmaster-vehicle-edge-based-video-analytics-service-detecting-open-parking-spaces-urban-environments/
https://www.microsoft.com/en-us/research/publication/parkmaster-vehicle-edge-based-video-analytics-service-detecting-open-parking-spaces-urban-environments/
https://www.microsoft.com/en-us/research/publication/parkmaster-vehicle-edge-based-video-analytics-service-detecting-open-parking-spaces-urban-environments/
https://www.microsoft.com/en-us/research/publication/videoedge-processing-camera-streams-using-hierarchical-clusters/
https://www.microsoft.com/en-us/research/publication/videoedge-processing-camera-streams-using-hierarchical-clusters/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://www.smartthings.com/products/smartthings-hub
https://www.smartthings.com/products/smartthings-hub
https://www.movidius.com/myriadx
https://doi.org/10.1145/3267809.3267828
https://doi.org/10.1145/3132211.3134461
https://doi.org/10.1145/3132211.3134461
http://arxiv.org/abs/cs.LG/1806.08342
https://store.google.com/us/product/nest_learning_thermostat_3rd_gen
https://store.google.com/us/product/nest_learning_thermostat_3rd_gen
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://doi.org/10.1145/3132211.3134464
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MPRV.2009.82
https://greenwaves-technologies.com/
https://spectrum.ieee.org/tech-talk/telecom/internet/how-the-youtube-era-made-cloud-gaming-possible
https://spectrum.ieee.org/tech-talk/telecom/internet/how-the-youtube-era-made-cloud-gaming-possible
https://www.wink.com/products/wink-hub/
https://www.wink.com/products/wink-hub/
https://www.usenix.org/conference/hotedge18/presentation/venugopal
https://www.usenix.org/conference/hotedge18/presentation/venugopal
https://doi.org/10.1109/SEC.2018.00019
https://doi.org/10.1109/ICDCS.2017.182
https://doi.org/10.1145/3132211.3134463
https://www.usenix.org/conference/hotedge18/presentation/zhang
https://doi.org/10.1109/TCAD.2018.2858384
https://www.usenix.org/conference/hotedge19/presentation/zhou

	Abstract
	1 Introduction
	2 Background
	3 Experimental Methodology
	4 Performance and Energy Microbenchmarks
	5 Split Processing across Application Tiers
	5.1 Model Splitting
	5.2 Model Compression

	6 Concurrency and Multi-tenancy
	7 Summary and Implications of our Results
	8 Related Work
	9 Conclusions
	References

