
620

Exploiting Spot and Burstable Instances for Improving the

Cost-efficacy of In-Memory Caches on the Public Cloud

Cheng Wang ∗†, Bhuvan Urgaonkar, Aayush Gupta‡, George Kesidis and Qianlin Liang

†VMware Inc., Penn State University, ‡IBM Research Almaden

†wangcheng@vmware.com, bhuvan@cse.psu.edu, ‡guptaaa@us.ibm.com, {gik2, qxl5068}@psu.edu

Abstract

In order to keep the costs of operating in-memory storage

on the public cloud low, we devise novel ideas and en-

abling modeling and optimization techniques for combin-

ing conventional Amazon EC2 instances with the cheaper

spot and burstable instances. Whereas a naturally appealing

way of using failure-prone spot instances is to selectively

store unpopular (“cold”) content, we show that a form of

“hot-cold mixing” across regular and spot instances might

be more cost-effective. To overcome performance degrada-

tion resulting from spot instance revocations, we employ

a highly available passive backup using the recently emer-

gent burstable instances. We show how the idiosyncratic re-

source allocations of burstable instances make them ideal

candidates for such a backup. We implement all our ideas

in an EC2-based memcached prototype. Using simulations

and live experiments on our prototype, we show that (i) our

hot-cold mixing, informed by our modeling of spot prices,

helps improve cost savings by 50-80% compared to only us-

ing regular instances, and (ii) our burstable-based backup

helps reduce performance degradation during spot revoca-

tion, e.g., the 95% latency during failure recovery improves

by 25% compared to a backup based on regular instances.

CCS Concepts •Computer systems organization →
Cloud computing

Keywords spot instance, burstable instance, in-memory

caches, public cloud

∗ Part of this research work was done when the first author was a Ph.D.

student at Penn State University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys’17 April 23-26, 2017, Belgrade, Serbia

c© 2017 ACM. ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064220

1. Introduction and Motivation

In-memory storage is crucial to many public cloud-based in-

teractive applications (“tenants”) for meeting their stringent

latency and throughput requirements. Many such tenants ex-

hibit temporal variations in workload features such as (i) re-

quest arrival rates, (ii) content popularity, and (iii) working

set size. Consequently, dynamic resource allocation is cru-

cial for operating them cost-effectively on the public cloud

where costs are based on resource usage.

Not surprisingly, adapting traditional dynamic resource

allocation strategies - studied in the context of in-house, pri-

vate computing environments - to the idiosyncrasies of the

public cloud is an active area of research (see Section 6). We

find providers employing myriad innovations in pricing and

resource guarantees (i.e., service-level agreements) to bet-

ter monetize their otherwise under-utilized IT infrastructure.

The result has been the emergence of “cheap” virtual ma-

chine (instance) types whose lower prices are accompanied

by reduced “effective capacity” (i.e., capacity actually of-

fered to the tenant as opposed to the advertized maximum).

These cheaper instances come in two main classes. The

first class consists of revocable instances that may be selec-

tively reclaimed by the provider in favor of the more expen-

sive conventional (regular) instances when capacity needs

of the latter go up. Amazon EC2’s spot instances (2009),

are the most well-known examples of revocable instances.

More recently (ca. 2013), Google Compute Engine (GCE)

has also offered pre-emptible instances which, despite op-

erational differences from EC2 spot instances, similarly of-

fer lower prices for poorer availability. The second class of

cheaper instances are much more aggressively multiplexed

than regular instances on overbooked servers. They come in

smaller sizes and are known to exhibit significant capacity

dynamism at as fine a time-scale as a few seconds or min-

utes.

Although spot instances have been extensively explored

for cost-effective resource procurement, most of the stud-

ies only focus on batch processing jobs and use proactive

checkpointing and/or reactive live migration to deal with

spot revocations [13, 19, 39, 51]. However, when applied to

in-memory storage, these may fail to offer satisfactory per-

621

formance. To address this, some recent efforts [34, 49, 50]

consider active replication: the cache contents are replicated

across geo-distributed / weakly correlated spot markets for

fault-tolerance, and all the replicas can be used to serve the

requests for better performance. We would like to explore

a complementary but fundamentally different design point

based on the following ideas: (i) given that highly skewed

content popularity distribution is the norm, we mix “hot”

(popular) and “cold” (unpopular) content across spot and

on-demand instances in order to strike a balance between

performance and high resource utilization (which translates

to lower costs), (ii) to reduce the occurrences of spot bid

failures, we build scalable novel data-driven spot prediction

models, which are then used for the dynamic procurement

of spot instances, and (iii) to maintain performance goals in

the event of a spot revocation, we design a passive backup

based on newly emergent burstable instances whose ability

to offer much higher CPU and network bandwidth per unit

main memory compared to regular instances makes them

ideal candidates for this purpose. To our knowledge, (iii)

represents a novel use case for burstable instances. We use

memcached as our target in-memory storage application for

system design and implementation.

Contributions:

We make the following contributions.

• Data Analysis, Optimization, and Algorithm Design: We

offer novel ways of combining regular on-demand, spot,

and burstable instances advised both by the needs/properties

of memcached, as well as the relative strengths and weak-

nesses of these instance types.

• System Design and Implementation: We offer a complete

implementation of a dynamic resource allocation mech-

anism for memcached and a working prototype on EC2.

The core components of our system include a global con-

troller that periodically collects/predicts workload proper-

ties and conducts online optimization for resource alloca-

tion, a load balancer that dispatches requests to the appro-

priate nodes based on popularity and carries out failure

recovery when spot revocation occurs, and a key parti-

tioner that classifies the keys into hot and cold keys for

our hot-cold mixing.

• Evaluation: We present an empirical evaluation of our

ideas combining real-world and synthetic workloads as

well as simulations and live experiments on our EC2 pro-

totype. Our key results and lessons are: (i) our spot model-

ing outperforms the commonly used baselines by offering

fewer spot revocations, (ii) our hot-cold mixing, informed

by our modeling of spot prices, helps improve cost sav-

ings by 50-80% compared to only using regular instances,

and (iii) our burstable-based backup helps reduce perfor-

mance degradation during spot failures, e.g., the 95% la-

tency during failure recovery improves by 25% compared

to a backup based on regular instances.

2. Background

2.1 Memcached

memcached is a widely used distributed in-memory key-

value cache [27]. In addition to being used by many pop-

ular web applications (Facebook, LiveJournal, Wikipedia,

Twitter, Flickr, to name a few), it is also very popular

among smaller, cost-conscious tenants that form our focus.

Instead of running its own memcached on infrastructure-

as-a-service (IaaS) instances (like we consider), a tenant

may instead use a “managed” (i.e., software-as-a-service or

SaaS) in-memory storage service built using memcached.

One finds examples of such SaaS offerings both from IaaS

providers themselves (e.g., Amazon EC2’s ElastiCache, Mi-

crosoft Azure’s RedisCache) and from other entities that

procure instances from these IaaS providers (e.g., Redis-

labs’ Memcached cloud [28], Heroku’s MemCachier [29]).

Our techniques could be useful to the latter type of tenants

as well.

In a typical configuration, memcached employs a clus-

ter of nodes (instances or physical machines) for housing

its cache contents with a load balancer orchestrating data

placement, client request forwarding, failure handling, and

data replication (if used). In high-throughput environments,

memcached clusters are routinely composed of 100s to

1000s of nodes, and the load balancer may itself be repli-

cated for scalability and fault tolerance. memcached uses

consistent hashing to map both keys and nodes to points

on the same hashing ring. Each instance is responsible for

hosting keys whose hash values fall into the interval mapped

to it. Consistent hashing has been chosen for its well-known

benefits: it maps data objects to the same cache node as far as

possible, which is particularly useful when adding/removing

nodes. These properties allow a memcached cluster to be

dynamically scaled up or down. Given the time-varying na-

ture of many memcached workloads, these properties make

it well-suited for dynamically adjusting (auto-scaling) its

instance usage to workload conditions on a public cloud.

memcached implements options whereby its cache contents

may be replicated for redundancy to improve both service

availability and performance. Finally, it employs a least-

recently used (LRU) cache eviction policy. Read requests

for evicted or non-existent keys are served by the back-end.

Because spot instances may be revoked, not all workloads

can benefit from their lower prices. memcached may be

a good candidate for using spot instances. The failure of

a memcached node does not affect application correctness

if all data is persisted in the back-end. Similarly, a failure

does not make the overall service unavailable but may slow

it down (depending on how many requests now need to

be serviced from the slower back-end). It is crucial that

the cost reduction by using spot instances not result in a

significant loss of performance. Of course, acceptable levels

of performance loss would be tenant-specific. We assume

that the tenant has mechanisms for carefully considering

622

Instance type
Per unit resource price Smallest size CPU or net. bw to RAM ratio

vCPU ($/vCPU*hour) RAM ($/GB*hour) vCPU RAM (GB) vCPU/GB Mbps/GB

Regular
On-demand (OD) 0.0397 0.0057 1 3.75 0.13-0.53 18-146

Reserved 26-37% cheaper than OD (equal size) 1 3.75 0.13-0.53 18-146

Spot 70-90% cheaper than OD (equal size) 1 3.75 0.13-0.53 18-146

Burstable
Base capacity

0 (see caption) 0.013
0.05 0.5 0.075-0.1 70

Peak capacity 1 0.5 0.25-2 125-1000

Table 1: Comparisons of important aspects of regular, spot, and burstable offerings from Amazon EC2. The unit prices are calculated by

using linear regression models (R2
= 0.99). Surprisingly, network bandwidth does not play a role in our regression models; for burstables,

neither CPU nor network bandwidth figure in the pricing model and the instance price is perfectly proportional to the RAM capacity.

and specifying this. One way of doing this could be based

on comparing against reasonable baselines that operate the

application on a well-provisioned cluster comprising highly

available nodes; see Section 2.3.

Finally, our design targets read-heavy workloads. Evi-

dence from real systems suggests this is an important class

worthy of the techniques we develop for cost-efficacy. For

example, consider the Facebook workload USR [1] where

99.8% of requests are read operations. We leave it to future

work to extend our system to improve write performance,

possibly by adapting techniques from prior work, e.g., using

a small amount of on-demand instances (highly available) to

serve write requests [50] faster than in our system where we

write-through to a persistent back-end.

2.2 EC2 Instance Offerings

We find it useful to consider the following first-order clas-

sification of EC2 instance types: (i) regular, by which we

mean conventional on-demand (i.e., not including burstable)

and reserved instances that offer high availability and near-

fixed resource capacities, (ii) spot, and, (iii) burstable in-

stances (with guaranteed base capacity plus variable capac-

ity determined based on the tenant’s available resource to-

kens). Within each of these classes, there is further variety.

We do consider multiple resource capacity sizes (EC2 offers

about 40 different sizes for all of on-demand, reserved, and

spot) in Section 4 but ignore other second-order price vs.

capacity/performance trade-offs (e.g., “compute-optimized”

vs. “memory-optimized” vs. “IO-optimized”).

Price per unit resource: We find that a linear regression

model is able to offer an almost perfect explanation of

EC2 on-demand instance prices as functions of the num-

ber of vCPUs and RAM capacity. As an example, for 25

commonly-used on-demand instance types from the region

of US West (price data obtained in October, 2016), the model

p = 0.0397 · c+0.0057 ·m explains instance prices with R-

squared equal to 0.99, where p, c,m are the hourly instance

price, number of vCPUs and amount of RAM (GB), respec-

tively. Other classes may have slightly different coefficients

but are also explained equally well. A similar model for

burstable instances expresses their prices perfectly solely in

terms of their RAM capacities. The per unit resource prices

reveal interesting relative strengths for cost-efficacy and are

used in our optimization in Section 4. Although the instance

prices do change across regions and over time (although at

a coarse time granularity, e.g., month, year), and the exact

trade-offs may change, our techniques should apply equally

well.

CPU and network bandwidth per unit RAM: For each

instance type, we denote as “vCPU/RAM” and “Network

BW/RAM” the CPU capacity in units of a regular EC2

vCPU (could be fractional as for burstables) and the network

bandwidth (Mbps) associated with per unit RAM capacity

(GB), respectively. High values for these ratios are desirable

features for instances used in our passive backup (to be

described in Section 3.3). The key observation we make

is that, when operating at their peak capacity (the timing

of which may be carefully controlled by the tenant itself),

burstable instances offer much higher ratios for every dollar

invested than regular or spot instances.

Table 1 summarizes the above trade-offs.

2.3 Baselines and Shortcomings

We now present several “baselines” for procuring instances

for a memcached workload. These baselines represent a

combination of (a) salient ideas from literature on dynamic

resource allocation as well as (b) recent related work on

memcached-specific resource procurement on the public

cloud (see Section 6 for details). We use the baselines as

strawman approaches in the following ways: (i) to identify

and illustrate shortcomings in the state-of-the-art, (ii) to mo-

tivate important aspects of our system design, and (iii) as

points of comparison in our experimental evaluation (Sec-

tion 5) to quantify the benefits offered by our proposed ap-

proach. The first 3 rows of Table 4 summarize our baselines.

On-demand instances only: A natural first baseline is based

on only using the highly available regular instances. Al-

though reserved instances are 26-37% cheaper than their on-

demand counterparts, their efficacy for unpredictable work-

loads is questionable since they require an upfront commit-

ment for usage lasting 1-3 years. That is, in the absence of

significant long-term predictability in resource needs, using

reserved instances may be a “high-risk” proposition [46].

Therefore, we restrict our baseline to on-demand instances

(billed at an hour’s timescale). Using only on-demand in-

stances would eliminate the complexity of bidding for spot

623

instances and reacting to their revocations and the corre-

sponding performance degradation. Within this, we consider

two baselines. The first of these called ODPeak provisions

for the peak resource needs at all times, whereas the second

approach ODOnly modulates its allocation of on-demand in-

stances to match the dynamic needs. Both baselines are com-

puted offline (or equivalently represent hypothetical scenar-

ios with perfect knowledge of the workload). ODOnly rep-

resents a state-of-the-art dynamic resource allocation (auto-

scaling) technique being adapted to our problem.

Popularity-aware data separation among on-demand

and spot: memcached workloads (and storage system work-

loads in general) usually exhibit skewed data popularity dis-

tributions wherein a small fraction of the overall content

(“hot”) receives most of the requests with the remaining be-

ing relatively unpopular (“cold”). Much work exists on ac-

curately and efficiently identify hot vs. cold data (including

extensions for more fine-grained classification) in an online

manner [52] and we assume such a technique is available

to our system. This motivates our second class of baselines

wherein we wish to combine spot instances with on-demand

instances as follows: use cheaper spot instances for storing

cold content and the more expensive on-demand instances

for storing hot content. Clearly, an approach using such “hot-

cold separation” to combine spot and on-demand instances is

likely to offer significant cost savings compared to ODOnly.

Note that, although based on a straightforward idea, this

hot-cold separation is novel to our knowledge. More im-

portantly, it is complementary to other recent proposals for

operating in-memory caches cost-effectively on the public

cloud, e.g., [50] - see a detailed discussion in Section 6. We

refer to this approach as OD+Spot Sep in our evaluation.

Although appealing due to its potential cost savings over

using only on-demand instances, this class of baselines

presents us with three important challenges.

• Resource wastage: Since hot data only takes a small por-

tion of the overall working set but receives a large frac-

tion of the requests, on-demand instances that hold the

hot data would need more CPU/network resources but

much less memory capacity than spot instances that hold

the cold data, which may lead to resource wastage due to

the rigid instance offerings of current public clouds. For

example, as we show in detail in Section 5, using hot-

cold separation for a scaled wikipedia workload employs

6 on-demand and 4 spot instances during the hour with

the peak intensity. The average CPU utilization of the spot

instances is a poor 18% whereas the memory occupancy

of the on-demand instances is only 25%. The scheme on

bottom-left of Figure 3 offers an illustration of such re-

source wastage.

• Spot instance selection: Most prior studies [16, 24, 35,

36, 39, 40] use empirical cumulative distribution function

(CDF) of historical spot prices for spot price prediction.

Such CDF-based models end up discarding valuable tem-

poral information about the continuity of the spot price

staying below different bid values, which may lead to poor

decision-making. For example, as we show in Figure 8,

although there are frequent bid failures under bid1, the

CDF-based approach still fails to anticipate bid failures

since the CDF of spot prices does not vary much over

time. We refer to this baseline as OD+Spot CDF.

• Spot revocations: A final challenge is, of course, to be able

to recover from spot instance revocations effectively. Prior

studies mainly focus on state migration upon receiving a

spot revocation from EC2 (either purely reactive or based

on proactive checkpointing) [13, 19, 39, 51]. However,

this may not be suitable for in-memory caches due to

the resulting degradation in response times during the

recovery process.

3. Key Concerns and Ideas

Assuming extensive prior work on predicting resource needs

and identifying hot vs. cold content can be leveraged, our

solution must then address the following three issues:

• Procurement: how many spot and on-demand instances

(and what sizes) to procure? for spot instances, what bids

to place and on which markets?

• Usage: what portion of the overall workload to place on

procured spot and on-demand instances?

• Recovery: how to ensure that we recover quickly from a

spot revocation? how to ensure that any adverse impact

on performance due to such failure and the overheads of

recovery is kept within acceptable limits?

3.1 Procurement: Exploiting Short-Term Temporal

Locality

In order to answer the first set of questions, a tenant needs to

model well the following two properties both conditioned on

specific bids values (chosen from a small set of pre-selected

values): “lifetime of a spot instance” and “average spot price

during lifetime.” Although an empirical distribution of his-

torical spot prices would be able to predict these proper-

ties, it would fail to capture service contiguity (recall dis-

cussions on the shortcomings of the CDF-based baseline in

Section 2.3).

Spot price

Time

�(�)
Bid price

 !(�)
Bid failure

Figure 1: The lifetime of a spot in-

stance and average spot price during

lifetime.

We devise scal-

able data-driven mod-

els for these proper-

ties. We model as a

random variable Ls(b)
the length of a con-

tiguous period during

which the spot price in

market s is less than

or equal to a bid b,
which is an estimation

of the upper bound of

624

Bid fs(b) ξs(b) fs(b)* ξs(b)*

m
4
.l

ar
g
e-

c 0.5d 0.12 0.08 0.29 0.14

1d 0.07 0.07 0.09 0.11

2d 0.02 0.09 0.02 0.11

5d 0.02 0.09 0.02 0.11

10d 0.02 0.09 0.02 0.11

m
4
.l

ar
g
e-

d 0.5d 0.10 0.06 0.62 0.23

1d 0.10 0.07 0.50 0.22

2d 0.10 0.10 0.45 0.22

5d 0.13 0.12 0.42 0.23

10d 0.07 0.19 0.34 0.25

Table 2: The assessment metrics fs(b) and ξs(b) under different (mar-

ket,bid) pairs with history window of 7 days. “-c” and “-d” represent the

markets of us-east-1c and us-east-1d. fs(b)* and ξs(b)* are computed

based on predictions of Ls(b) and p̄s(b) using CDF of spot prices.

the lifetime of an instance procured using bid b1. We denote

as p̄s(b) = E[pst |L
s(b)] a random variable for the average

spot price pst in market s during a period when the bid b is

successful, which serves to estimate the cost of a spot in-

stance procured by placing a bid b. Figure 1 illustrates our

definitions of L(b) and p̄(b). Our prediction assumes tempo-

ral locality2 over a recent sliding time window of multiple

time-slots for making predictions of Ls(b) and p̄s(b). Large

Ls(b) and small p̄s(b) imply long service continuity and low

costs, thereby encouraging the use of spot instances using

bid b. We use a small percentile (e.g., 5th) of the recently

constructed distribution of Ls(b)–denoted as L̂s(b)–as our

prediction in the ongoing horizon. The reasoning behind

this choice is that if the statistical properties of Ls(b) do not

change much over the sliding window, we expect that with a

very high probability, bid b would be successful for at least

L̂s(b) time units. We use the average of p̄s(b) during the

sliding window as its predictor (denoted as ˆ̄p(b)).
Validation: To evaluate our predictors, we introduce the fol-

lowing assessment metrics. We say that an over-estimation

of Ls(b) has occurred when L̂s(b) > L(b). This repre-

sents a scenario wherein the tenant was likely overly ambi-

tious in using spot instances. We further define Ls(b) over-

estimation rate as the fraction of Ls(b) predictions that result

in over-estimation, denoted as fs(b). The assessment metric

for ˆ̄ps(b) should capture the extent of its deviation from ac-

tual values. We compute ξs(b) = (p̄s(b)− ˆ̄ps(b))/p̄s(b) and

define as relative deviation of p̄s(b) the mean value of ξs(b)
for all occurrences of p̄s(b) in the sliding window. Lower

values are better for both metrics.

1 Clearly, the lifetime defined in this manner could depend intimately on the

time when a bid is placed. We do not consider this complexity in our work

because it is conceptually simple to extend our modeling for this. E.g., we

could carry out our analysis separately for each hour of the day (or another

appropriate time duration).
2 By temporal locality, we mean that over relatively short time-scales (a

day to a few days), the key features tend to change little, whereas over

longer time-scales (weeks to months), they might undergo more substantial

changes.

0 30 60 90
0

0.5

1

1.5

2

2.5
m4.large us−east−1b

Time (day)

P
ri
c
e
 (

$
/h

o
u
r)

spot price

OD price

0 30 60 90
0

0.5

1

1.5

2

2.5
m4.large us−east−1d

Time (day)

P
ri
c
e
 (

$
/h

o
u
r)

spot price

OD price

0 30 60 90
0

0.5

1

1.5

2

2.5
m4.xlarge us−east−1b

Time (day)

P
ri
c
e
 (

$
/h

o
u
r)

spot price

OD price

0 30 60 90
0

0.5

1

1.5

2

2.5
m4.xlarge us−east−1d

Time (day)

P
ri
c
e
 (

$
/h

o
u
r)

spot price

OD price

Figure 2: Sample spot price traces of m4.large and m4.xlarge in

us-east-1b and us-east-1d during the 90-day period (2015/07/08-

2015/10/06).

We present a small but representative subset of our over-

all results due to space limits. We vary the spot markets and

bids and show the above assessment metrics in Table 2. We

use spot price traces collected during a 90-day period in Fig-

ure 2, with bid b picked from {0.5d, d, 2d, 5d, 10d}, where d
is the corresponding on-demand price. For purposes of com-

parison, we also present the above metrics based on predic-

tions of Ls(b) and p̄s(b) by using the empirical CDF of his-

torical spot prices within the same sliding window (updated

dynamically). For this baseline, L̂s(b) = H · Prob(pst ≤ b)
wherein H = 7 days is the history window size, and ˆ̄ps(b) =
E[pst |pt ≤ b]. Under most (market, bid) pairs, f and ξ are

below 10%, which we consider a reasonable demonstration

of the efficacy of our predictors. We also find that f and ξ
using our predictors are almost always better (lower) than

those obtained under the CDF-based approach, which indi-

cates that our models exhibit better temporal locality than

the CDF of raw spot prices.

3.2 Usage: Combining Spot and On-Demand

Recall the resource wastage we identified for OD+Spot -

Sep. In order to improve resource utilization and reduce

costs, we devise a content placement scheme that mixes

hot and cold content among on-demand and spot instances

to achieve a desirable balance between using procured re-

sources well and keeping spot failure induced performance

degradation within tolerable limits. Figure 3 provides an il-

lustration of the basic idea using a hypothetical heavy-tailed

content popularity distribution.

In our model, we denote as α (0 < α ≤ 1) the percent-

age out of the whole working set that needs to be held in

memory. A choice of α equal to or close to 1 represents an

in-memory data store, whereas a smaller α probably repre-

sents a caching tier of a multi-tier application where only a

625

Memcached
servers

Memcached
servers

OD pool

R
A
M

R
A
M

R
A
M

R
A
M

Spot pool

R
A
M

R
A
M

R
A
M

R
A
M

RAM
wastage

CPU and
net b/w
wastage OD pool

R
A
M

R
A
M

R
A
M

R
A
M

R
A
M

R
A
M

R
A
M

R
A
M

R
A
M

R
A
M

R
A
M

R
A
M

Prop: Hot-cold mixing

A
cc

e
ss

fr

e
qu

e
nc

y

Key popularity
distribution

Hot Cold

Key rank

OD+Spot_Sep: hot on OD, cold on spot

Spot pool

R
A
M

R
A
M

R
A
M

R
A
M

Burstable pool
(backup for spot)

Figure 3: Illustration of hot-cold mixing and burstable-based pas-

sive backup of spot contents.

small subset of the working set needs to be in memory to

improve performance as well as saving costs for the caching

tier. We put the data into different popularity classes by de-

noting as H (0 < H ≤ α) the portion of working set that

is hot3. Both α and H are application/workload-specific and

could also be time-varying.

Denote as B the set of all bid values. Denote as the set

of all markets S = {{regions} × {availability zones} ×
{Instance types}} ∪ {On-demand}. Note that on-demand

instances can be viewed as a special type of spot instance

for which the bid price equals the fixed price of the on-

demand instance and the lifetime is infinite. Then we denote

as xsb
t , ysbt ∈ [0, 1] the portions of hot and cold data that will

be placed in market s ∈ S using a bid b ∈ B at time t,
respectively. The amount of resource capacities allocated in

(s, b) should be sufficient to accommodate the correspond-

ing percentage of the working set and request arrival rate. We

leave the details of how to use our models in an optimiza-

tion problem (with the goal of minimizing costs) to solve for

xsb
t , ysbt to Section 4.

3.3 Recovery: Burstable-based Passive Backup

We build upon ideas from the classic primary-backup fault-

tolerance technique [3]. Unlike the classic technique, how-

ever, we only replicate the hot cached elements that our hot-

cold mixing has placed on spot instances (i.e., these are the

cache elements we would like to be able to access with low

latencies even upon the revocation of the spot instances hold-

ing them). It would be desirable to achieve low costs while

keeping the failure recovery period short such that the per-

formance degradation is kept small. Given that the amount of

hot data is usually small, smaller instances might be a good

fit for backup due to their low prices if they can still offer

adequate capacities.

We illustrate different cases of how the failure recovery

could be carried out in Figure 4. In case 1(a), we use the

3 We consider as hot the most popular subset of the overall working set that

accounts for 90% of accesses. There can be other ways of defining hotness

and it is also possible to consider more levels of popularity than just two as

we do. Our formulation easily extends to incorporate these.

backup (“B”) to warm up (“copy”) the cold cache of the

replacement (“R”), which finishes before the spot instance

(“S”) gets revoked. Then we reconfigure the load balancer

so that the requests are redirected to R. In case that R is not

warmed up yet when S is revoked (1(b)), we could temporar-

ily serve the requests and warm up R using B (events 4− 6),

or the back-end database (events 6′ − 7′). If R is not even

started upon spot revocation (case 2), we could apply similar

strategies as in case 1(b). Note that we only store hot data on

B. For the warm-up process from B to R only the first request

to the data item is served by B, and R is updated with the lat-

est value in the background; all the subsequent requests for

the same data item would be served by R. Therefore, even

if the network latency between B and R becomes high, the

overall performance could still be acceptable.

Warning

S

B

R

Requested

1

2

120s
Time

Ready

3

4

6 Revoked

5 Load balancer: SàR

1(a)

Warning
S

B

R

Requested

1

2
Ready
3

4

5 Revoked

BàR

1(b)

6� 7�6

�

SàR
SàB

2

Warning
S

B

R

Requested

1

2

Ready
5

3 Revoked

BàR
7

6

SàB

4�

7�

6�

SàR

Figure 4: Different cases for the failure recovery process. “S, B, R”

denote spot, backup and replacement, respectively. Events 6′ − 7
′:

B is only used for warming up R. Events 4-7: B is used for both

warming up R and serving requests.

The number of backup instances can be determined based

on the amount of hot content and the choice of backup in-

stance type. In order to expedite the warm-up process and

mitigate the performance degradation during the interim ∆,

it would be desirable if the backup has high CPU/network

capacities per unit RAM. From Table 1, we notice that

burstable instances, if operated at their peak capacity, may

be a better option than others in that they offer superior

CPU and network bandwidth per unit RAM for every dol-

lar invested (Table 3). Although the resource capacities of

burstables are variable, they are not random; in fact, based

on EC2’s documentation and our measurements (Figure 5),

the CPU capacity and network bandwidth follow determin-

istic token-bucket mechanisms which the tenant can control

626

time (sec)
0 200 400 600 800 1000 1200 1400

B
a
n

d
w

id
th

 (
M

b
p

s
)

0

200

400

600

800

1000

Figure 5: The token-bucket mechanisms of the CPU capacity and

network bandwidth for t2.micro.

Burstable type Unit price ($/hour) OD price ($/hour)

t2.nano 0.0065 0.0425

t2.micro 0.013 0.0454

t2.small 0.026 0.0511

t2.medium 0.052 0.1022

t2.large 0.104 0.125

Table 3: Cost comparison of EC2 burstable instances. The OD

price is calculated based on the peak capacity of burstable instances

and the unit price of OD in Table 1.

by adjusting its resource usage patterns. In our implementa-

tion, we keep track of the token status of the burstables and

adapt to different strategies based on how much data needs

to be copied and how many tokens are available.

4. System Design and Implementation

4.1 Predictive Optimizer Design

We consider a slotted time system with time slots of length

∆ (predictive control window, e.g., one hour) indexed by t.
We cast an online optimization problem that takes predic-

tions of workload properties - request arrival rate λ̂t and

“working set” size M̂t as inputs, procures instances from

multiple EC2 markets with appropriate bids, and devises a

suitable cache placement. The goal of our formulation is to

minimize the tenant’s costs while satisfying performance tar-

get during the next time slot.

Denote as Nsb
t and Ñsb

t the number of existing instances

(“system state”) and additional instances to be procured

(“control actions”) at the start of time slot t, respectively,

in market s ∈ S with bid b ∈ B, with cs and ms being the

number of vCPUs and amount of RAM 4 for the correspond-

ing instance type. Ñsb
t could be negative (corresponding to

a need for de-allocation).

4 Although we also consider network bandwidth - crucial to memcached

performance - in our allocation decision-making, we omit it and conduct

our discussion only in terms of CPU capacity and RAM.

Denote as M̂t the predicted working set size in time slot

t. Based on our key idea on hot/cold mixing, we have

∑

s∈S

∑

b∈B

xsb
t = H, ∀s ∈ S, b ∈ B

∑

s∈S

∑

b∈B

ysbt = α−H, ∀s ∈ S, b ∈ B

(Nsb
t + Ñsb

t)ms ≥ (xsb
t + ysbt)M̂t, ∀s ∈ S, b ∈ B

∑

s∈SOD

(xsb
t + ysbt) ≥ ζ

(1)

where the last constraint guarantees that at least ζ fraction

of the entire working set would be placed on on-demand

instances which preserve service availability (and perfor-

mance to some extent) upon one or more bid failures. SOD

is the set of all on-demand instance types. Both α and H are

application-specific and could also be time-varying.

Denote as lt the latency target and lTGT the target per-

formance. Define F (.)(∈ [0, 1]) as the CDF of data popular-

ity distribution (measured and updated in an online manner).

Since F (α) percentage of the arrivals would be hit and the

rest would be miss, we have

F (α)lHIT + (1− F (α))(lHIT + lMISS) ≤ lTGT

where lHIT and lMISS represent the hit latency and the

additional latency due to miss, respectively. lMISS can be

measured empirically and lHIT depends on the resource

allocation. Given lTGT and α, we can obtain lHIT as the

latency bound of an instance with 100% hit rate in order to

satisfy the overall performance target.

Define lt = φ(λt, vCPU,RAM) to capture how resource

allocation affects application performance wherein λt is the

request arrival rate. The φ(.) function can be either em-

pirically measured offline and updated periodically online

(e.g., φ(.) could be a regression model [23] or a lookup ta-

ble based on the performance profiling results as is done in

our evaluation), or theoretically modeled, e.g., via queuing

analysis [10, 43]. Given the latency bound lHIT , we have

(∀s ∈ S, b ∈ B)

λsb
t = λ̂t(

xsb
t

H
F (H) +

ysbt
α−H

(F (α)− F (H)))

φ(λsb
t , cs(Nsb

t + Ñsb
t),ms(Nsb

t + Ñsb
t)) ≤ lHIT

wherein λsb
t represents the arrival rates assigned to instances

in market s under bid b. According to Eq. 1, we would

allocate enough RAM capacity so that the full α percentage

of dataset could be in memory. Therefore, we can re-write

the above equation as follows:

(Nsb
t + Ñsb

t)λsb ≥ λsb
t , ∀s ∈ S, b ∈ B (2)

wherein λsb is the maximum workload on one instance in

market s under bid b without violating the latency bound

627

lHIT , when the full dataset (xsb
t +ysbt)M̂t is held in memory.

λsb can be obtained via offline performance profiling. This

simplification converts Eq. 2 into a linear constraint.

Resource costs: Denote as ˆ̄psbt the predicted average price

during t (ˆ̄psbt is the on-demand price for on-demand in-

stances). Therefore, the total resource costs (with a slight

over-estimation due to ignoring bid failures during this time

slot ∆) can be expressed as
∑

s∈S

∑

b∈B
ˆ̄psbt (Nsb

t +Ñsb
t)∆.

Bid failure penalty: When spot price exceeds the bid asso-

ciated with an instance, the tenant may incur one or both of

(i) performance degradation due to the capacity loss and (ii)

explicit additional costs incurred by remedial actions it may

take. Different choices for (ii) have been explored for EC2

spot instances wherein a warning is offered a little ahead

(2 minutes as of this paper) of spot revocation. In effect,

procuring a spot instance is made “more expensive” by an

amount that is a function both of the spot price evolution as

well as the bid. Whereas this additional expense is explicit

for (ii), it has to be translated from performance degrada-

tion for (i) in a tenant-specific way. We devise the follow-

ing simple (yet effective as seen in our evaluation) model

for capturing this as a “penalty” or “loss rate” associated

with a (spot instance, bid) combination given as
β1x

sb

t
+β2y

sb

t

L̂s(b)

wherein L̂s(b) denotes the predicted L(b) in market s. β1

and β2 are coefficients reflecting the penalty of losing hot

data and cold data, respectively. The choice of coefficients

would be tenant/application-specific. In our evaluation, we

choose the values such that all terms/parameters in the ten-

ant’s cost function are non-negligible.

Resource deallocation penalty: De-allocating resources

may not be “free”. CPU is a relatively “stateless” resource

that can be scaled up/down instantaneously without af-

fecting application performance much (barring hardware

caching/TLB-related effects), if fine-grained scaling is en-

abled. However, memory, even if scaled down assuming

perfect prediction of the application’s needs, might degrade

application performance since the evicted data might be-

come popular in future time slots. Therefore, we introduce

into our cost model an additional term ηmax{0,−Ñsb
t } in

order to dampen memory de-allocation.

Optimization problem formulation: At the beginning of

time slot t (proactive control window), we solve the follow-

ing online control problem:

Minimizexsb
t

,ysb
t

∑

s∈S

∑

b∈B

(

ˆ̄psbt (Nsb
t + Ñsb

t)∆

+ ηmax{0,−Ñsb
t }+∆

(β1x
sb
t + β2y

sb
t)M̂t

L̂s(b)

)

s.t. (1), (2).

wherein Nsb
t and Ñsb

t are integer variables. Note that λ̂t and

M̂t need to be predicted via appropriate predictive models,

e.g., an AR(2) model λ̂t = γ1λt−1+γ2λt−2, before solving

the optimization problem.

4.2 Implementation

Memcached
servers

Burstable
(replica of spot)

Key
partitioner

Request
dispatcher

Pool with
prefix �h�

Virtual pools (weighted
consistent hashing)

Client
requests

Hot/Cold
weights

Resource allocation

Hot/Cold
weights

Arrival

Working-
set size

Spot price

t

Workload
prediction

Update
L(b) pred

Predictive
optimizer

Global controller

Pool with
prefix �c�

OD pool

Spot pool

Bid

failure

If DestIP � failed spot

Cold cache
warm-up

Request
dispatcherp

Pool with
prefix �h�

Virtual pools (weighted
consistent hashing)

Pool with
prefix �c�BidBid

failure

If DestIP � failed spot

Load Balancer

Figure 6: Key elements of our prototype implementation.

Figure 6 depicts the salient aspects of our prototype im-

plementation on EC2. We use Facebook’s mcrouter [25] as

the front-end of our memcached cluster wherein we imple-

ment these two components of our overall system: (i) a key

partitioner, and (ii) a load balancer. A final component of our

system is a global controller. Next, we describe these 3 com-

ponents in detail (including a discussion of some elements

for which we assume existing work can be leveraged).

Key partitioner: We create Bloom filters using access

frequency-based heuristics which are periodically refreshed

to keep track of “hot” keys (which we define as keys with

access frequency above a certain threshold within a given

time window). More sophisticated heuristics such as ghost

lists [26], probabilistic counters [9], Count-Min Sketch [7],

etc., can easily replace our simpler approach. This informa-

tion is used to annotate keys as hot (via a prefix “h”) or cold

(via a prefix “c”). This can be easily generalized to additional

popularity levels if needed. If certain cold data becomes hot,

the key partitioner would detect this change via well-studied

techniques in the prior work [5, 17] and re-assign prefixes to

the corresponding keys.

Load balancer: Periodically, mcrouter updates its records

of the hot and cold weights of all memcached instances

based on the output of the optimization problem solved by

the global controller. We leverage mcrouter’s PrefixRout-

ing technique (“h” and “c” in our case) to create separate

“virtual” pools for hot and cold keys. These pools exist on

the same set of memcached servers, allowing hot/cold key

segregation without having to resort to instance separation.

Within each virtual pool, we use a weighted consistent hash-

ing algorithm (implemented in mcrouter) to forward the re-

quests such that the amount of hot/cold data placed on the

memcached nodes are proportional to their hot/cold weights.

628

For approaches with passive backup, during normal opera-

tions, update/write requests for the content on spot instances

are also sent to the appropriate backup nodes to maintain

consistency. Read requests are not served by backup nodes

based on burstable instances, allowing them to accumulate

CPU and network bandwidth tokens in anticipation of the

work they would need to do upon a spot revocation. Finally,

upon receiving warning about an impending spot revocation,

we allocate a new on-demand instance as its replacement.

We implement all the options - direct transition to the re-

placement or via a backup node - discussed in Section 3.3

(recall Figure 4) to be able to compare them in our evalua-

tion.

Global controller: The global controller, running on dedi-

cated instance, periodically updates workload properties and

spot price predictions, solves the online optimization prob-

lem from Section 4 and determines the hot xsb
t and cold ysbt

weights for the market s with bid b. This information is then

sent to the load balancer (implemented within mcrouter)5.

Within the same market and under the same bid, the weights

are evenly distributed among all instances, i.e., each instance

obtains the same portions of hot and cold weights. For a

multi-tier application, the global controller would also be re-

sponsible for coordinating resource scaling for/across differ-

ent tiers, e.g., scaling up the CPU capacity of the database

tier vs. scaling up the RAM capacity of the caching tier.

We do not consider these issues in our design [11, 44]; in

our evaluation we locate our back-end on an instance pro-

visioned for worst-case workload needs. Finally, we also

implement a reactive element in our global controller to

take corrective resource allocation decisions in case of unex-

pected events such as flash crowds that are not captured by

the above predictive mechanisms. We do not discuss it due

to space constraints. The idea of combining complementary

predictive and reactive elements into a hierarchical control

framework to deal with unexpected flash crowds and mis-

prediction of the workloads is a very well-established design

principle numerous specific forms of which have been stud-

ied [10, 33, 37, 44].

5. Experimental Evaluation

5.1 Experimental Setup

Workloads: We scale the Wikipedia access trace [42] to cre-

ate workloads with different peak arrival rates and maximum

working set sizes. We use the YCSB benchmark to generate

requests (100% read) to memcached instances based on Zip-

fian popularity distribution with the Zipfian parameter varied

in the range 0.5-2 (higher value yields a more skewed popu-

larity distribution).

memcached configuration: For the prototype experiments,

we set the dynamic working set size to 25-60GB (with 4KB

5 In this work, we assume a reliable mechanism to commit this information

consistently across all mcrouters if there exist more than one load balancers.

Systems such as Chubby [4], Zookeeper [15] can be used for this purpose.

Approach Uses our Uses our Passive

spot modeling? hot-cold mixing? backup?

ODOnly × × ×
OD+Spot Sep

√
× ×

OD+Spot CDF ×
√

×

Prop NoBackup
√ √

×
Prop

√ √ √

Table 4: Procurement approaches that we compare.

item size) and the maximum arrival rate to 320k operations

per second (Ops), respectively. We consider a average la-

tency target of 800us and an 95%ile latency target of 1ms.

Our workloads can be handled by a single mcrouter running

on a well-provisioned c4.2XL on-demand instance and we

do not need to consider replicating mcrouter.

EC2 instance types considered: Although our implementa-

tion is flexible enough to consider the full array of EC2 in-

stance on-demand, spot, and burstable types, we experiment

using a limited set both for ease of understanding/explaining

interesting phenomena and for addressing certain peculiari-

ties of memcached. It is well-known that memcached does

not scale well beyond four cores [6]. Therefore, we exclude

larger instances and only consider instance types within the

m3.*, c3.* and r3.* series with less than or equal to four

vCPUs as candidates for on-demand (a total of 6 instance

types). For spot instances, we consider the 90-day long spot

price traces of m4.large and m4.xlarge collected from the us-

east-1c and us-east-1d regions (Figure 2). We use the first

7-day sub-trace of each spot price trace as the training data

to obtain initial parameters of our spot feature predictors (re-

call Section 3.2). We pick d and 5d as the bid prices for each

spot market wherein d is the on-demand price for that spot

market. All our experiments are on instances running Ubuntu

14.04 operating system.

Procurement approaches: We consider two operating modes

of our system: one without a passive backup (Prop NoBackup)

and the other with a passive backup (Prop). In Table 4, we

list these approaches as well as the baselines presented in

Section 2.3. We offer a summary comparison of all ap-

proaches in terms of whether each: (i) uses our spot mod-

eling and prediction, (ii) exploits hot-cold mixing, and (iii)

employs a passive backup.

Note on the scope of our evaluation: Our techniques are

useful if workloads exhibit read-heavy accesses skewed pop-

ularity, which are found to occur frequently as suggested in

prior work [1, 42].

5.2 Efficacy of Our Spot Feature Modeling

We compare the following two approaches: OD+Spot CDF

and Prop NoBackup. The only difference between these

approaches is how spot instance features (residual lifetime

and average spot price during lifetime) are predicted.

First, we conduct trace-driven simulations and compare

long-term costs and memcached performance with the two

629

0 30 60 90
0

0.5

1

1.5

2

2.5

Time (day)

$
/h

o
u

r

spot price of m3.XL-c

spot price

bid
1
=OD

bid
2
=5*OD

60
Time (day)

(a) Spot price of m4.XL-c

0 30 60 90
0

500

1000

1500

Time (day)

L
if

e
ti

m
e
 (

m
in

)

(b) Predicted lifetime (Prop_NoBackup)

bid
1
=OD

bid
2
=5*OD

0 30 60 90
0

500

1000

1500

Time (day)

L
if

e
ti

m
e
 (

m
in

)

(c) Predicted lifetime (OD+Spot_CDF)

bid
1
=OD

bid
2
=5*OD

Figure 8: Spot price and predicted instance residual lifetime under different strategies.

0 8 16 24
0

2

4

6

8

10

12

Time (hour)

(a) Num. of spot instances (OD+Spot_CDF)

N
u

m
.

o
f

in
s
ta

n
c
e
s

bid
1
=OD

bid
2
=5*OD

Failure

0 8 16 24
0

200

400

600

800

1000

1200

1400

Time (hour)

L
a
te

n
c
y
 (

u
s
)

(b) Latency on prototype

avg Prop_NoBackup

avg OD+Spot_CDF

95% Prop_NoBackup

95% OD+Spot_CDF

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Latency (us)

C
D

F

(c) Empirical CDF of latency

OD+Spot_CDF

Prop_NoBackup

Figure 9: Resource allocation and performance measurement on EC2 (impact of spot prediction).

m4.L−c m4.L−d m4.XL−c m4.XL−d
0

0.2

0.4

0.6

0.8

1

Spot markets

N
o

rm
a
li

z
e
d

 c
o

s
ts

(a) Normalized costs

Prop_NoBackup

OD+Spot_CDF

m4.L−c m4.L−d m4.XL−c m4.XL−d
0

0.05

0.1

0.15

0.2

Spot markets

%

(b) % days w/ perf. violation

Prop_NoBackup

OD+Spot_CDF

Figure 7: Normalized costs (divided by costs of ODOnly) and

percentage of days when the performance target is violated when

using Prop NoBackup and OD+Spot CDF.

approaches assuming only one of the four spot markets of

Figure 2 is available at a time. This corresponds to the real-

world scenario where the tenant is forced to stick to a single

market for performance/management concerns, e.g., the ten-

ant wanting to place its cache nodes in physical proximity of

its back-end or its client base. We specify a peak arrival rate

to 500k Ops and the maximum size of the cache contents

(henceforth also called the working set size) to 100 GB. The

popularity distribution is zipfian with parameter 2.0. Fig-

ure 7 shows the normalized costs (obtained by dividing by

the costs for ODOnly) and percentage of days when the per-

formance target is likely to have been violated (more than

1% of requests are affected by bid failures). We find that

Prop NoBackup is able to achieve much better performance

than OD+Spot CDF while still obtaining comparable cost-

savings (only 5% lower than). We may attribute these im-

provements to our spot feature modeling techniques. Fig-

ure 8 shows the predicted instance residual lifetimes avail-

able to the two approaches when operating in the spot market

m4.XL-c (OD+Spot CDF performs the worst in this mar-

ket), thereby helping us appreciate the role of our spot fea-

ture modeling. By directly modeling and predicting residual

lifetime instead of relying on cumulative distribution of his-

torical spot prices, our predictor is able to help the optimizer

avoid using bid1 (lower bid) when the spot price exceeds this

bid frequently (e.g., the interval between the 30-th and 60-th

days) whereas the CDF-based approach fails to do so.

We run 24-hour long experiments (with spot prices for the

51-st day for the market m4.XL-c) on our EC2-based pro-

totype. With OD+Spot CDF, our tenant experiences three

partial bid failures (a subset of the procured spot instances

fail) whereas with Prop NoBackup there are no such fail-

ures. We show our performance measurements in Figure 9.

We find that Prop NoBackup outperforms OD+Spot CDF.

In particular, although the two approaches offer similar aver-

age latency, Prop NoBackup has a superior tail latency ow-

ing to fewer spot revocations.

5.3 Efficacy of Our Hot-Cold Mixing

We now compare Prop NoBackup with OD+Spot Sep

which are identical in all respects except that the former

uses hot-cold mixing whereas the latter places all hot con-

tent on on-demand instances and all cold content on spot

instances. We construct experiments using spot prices from

market m4.L-d. We run 24-hour experiments on (for day 45)

our EC2-based prototype. We specify a maximum arrival

630

0 8 16 24
0

1

2

3

4

Time (hour)

N
u

m
b

e
r

o
f

in
s
ta

n
c
e
s

(a) Num. of spot instances (OD+Spot_Sep)

bid
1
=OD

bid
2
=5*OD

Failure

0 8 16 24
0

2

4

6

8

Time (hour)

N
u

m
b

e
r

o
f

in
s
ta

n
c
e
s

(b)Num. of spot instances (Prop_NoBackup)

bid
1
=OD

bid
2
=5*OD

Failure

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

latency (us)

C
D

F

(c) Empirical CDF of latency

Prop_NoBackup

OD+Spot_Sep

Figure 10: Instance allocation and performance measurements in spot market m4.L-d (impact of hot/cold mixing).

rate of 320 kops and a maximum working set size of 60 GB.

Figure 10 shows the resource allocation and performance

measurements in the spot market under different strategies.

First, we find that, our spot feature modeling enables the

placement of multiple bids for both strategies, thereby caus-

ing only a subset of spot instances fail (at any given time)

over the course of the day. In particular, we find that Prop -

NoBackup allocates fewer spot instances using the lower

bid (bid1) than using the higher bid (bid2) - our predictive

optimizer deems it risky to allocate all spot instances un-

der the lower bid (despite the possibly lower costs with the

lower bid). After the bid failure, we find that the number of

spot instances with the lower bid reduces to 0 under both

strategies, since our conservative prediction of VM residual

lifetime is updated to a much lower value.

Second, as shown in Figure 10(c), we observe that, on

average the two approaches offer comparable performance.

Prop NoBackup occasionally exhibits poorer tail latency.

This may arise from the higher likelihood of resources reach-

ing saturation levels with Prop NoBackup due to its more

aggressive resource usage. In addition, Prop NoBackup of-

fers correspondingly better costs - around 20-95% extra-

savings over OD+Spot Sep based on our results from Sec-

tion 5.5. This illustrates the cost vs. performance trade-off

associated with our hot-cold mixing and also serves to set

the context for exploring how adding a passive backup can

help alleviate this poorer performance.

5.4 Efficacy of Our Passive Backup

Recall that EC2 issues a warning 2 minutes prior to an im-

pending spot instance revocation. We consider two different

scenarios, (A) wherein the replacement instances requested

upon receiving such a warning become operational before

the actual revocation occurs and (B) wherein they become

operational only past the actual revocation. (A) and (B) cor-

respond to cases 1(b) and 2 in Figure 4.

Scenario (A): Existing measurement studies (including our

own) show that it usually takes about 100 seconds to launch

a small/medium-sized on-demand instance [8, 22]. There-

fore, this (more desirable) scenario is likely to be the usual

(or at least frequent) case. We consider Prop employing the

following backup options: (i) t2.medium, (ii) m3.medium

and (iii) c3.large. (i) is a burstable instance whereas (ii)

and (iii) are regular on-demand instances that are closest in

their RAM capacities to t2.medium. Our workload has 40k

Ops maximum arrival rate and 10GB working set size out

which 3GB we deem as hot data, with the zipfian parameter

for popularity distribution chosen to be 1. In Figure 11(a)

we compare latency during the recovery period for these

3 configurations of Prop versus those for Prop NoBackup

(no backup, so all misses serviced from a slow back-end)

and OD+Spot Sep (only cold data lost upon revocation).

We focus only on the content affected by a bid failure.

t = 0 corresponds to the beginning of the period when a

newly launched replacement is ready and the copying pro-

cess begins. The copying finishes at round t = 300 (latency

falls back to within 1.05x the target average latency). The

backup is not used for serving the requests during this pro-

cess. As expected, warm-up using passive backup provides

much better performance than Prop NoBackup in terms of

both the maximum latency and the time for it to settle down

to pre-revocation levels (length of the warmup period). The

burstable t2.medium is able to offer similar recovery-time

performance as the about 2x expensive c3.large, and out-

performs the slightly expensive m3.medium, while getting

closer to OD+Spot Sep where no loss of hot data. In ad-

dition, by using the burstable instance t2.medium, the 95%

latency during failure recovery improves by 25% compared

to a backup based on regular instance m3.medium.

0 100 200 300 400
0

1000

2000

3000

4000
(a) Choice of backup

Time (sec)

L
a
te

n
c
y
 (

u
s
)

t2.medium ($0.052/h)

m3.medium ($0.067/h)

c3.large ($0.105/h)

Prop_NoBackup

OD+Spot_Sep

Prop

0 100 200 300
0

500

1000

1500

2000

2500

3000

Time (sec)

L
a
te

n
c
y
 (

u
s
)

(b) Popularity skewness vs. instance type

t2.large−zipf2

t2.large−zipf1

t2.large−zipf0.5

t2.medium−zipf1

t2.small−zipf15 min

8 min

12 min

12 min

12 min

Time to earn tokens
 for warmup

Figure 11: Recovery latency under (a) different choices of backup

and (b) different content popularity distributions and instance types.

The curves for t2.medium and c3.large in (a) almost fully overlap.

Figure 11(b) shows the warmup time under different pop-

ularity distributions and burstable instance types. The dataset

sizes are chosen to be closest to their RAM capacities. We

631

also show the times needed to earn enough credits for the

burstable instances to burst during the warmup period, which

could reflect the mean time between failures that the bursta-

bles might afford for failure recovery. For the same instance

type, we observe longer warmup times when the popularity

distribution is less skewed, since it would take less time to

copy over the hottest keys (enough to bring the latency back

to normal) under more highly skewed distributions.

Scenario (B): Here, the replacement for the revoked spot

instance is not yet ready for use when the actual revocation

occurs. During this interim period, the backup may both as-

sist in warming up the replacement and also serve content

for the revoked spot instances. We emulate such scenario

on our prototype and still observe similar performance im-

provement over Prop NoBackup when the interim period is

not too long such that the burstables use all resource tokens.

Due to space limit, we omit these results here.

5.5 Impact of Workload Properties on Long-Term

Costs

0 500 1000 1500 2000 2500 3000

ODOnly

OD+Spot_CDF

OD+Spot_Sep

Prop_NoBackup

Prop

OD+Spot_CDF

OD+Spot_Sep

Prop_NoBackup

Prop

Cost breakdown

Cost ($)

OD
Spot
Burstable

zipf=1.0

zipf=2.0

Figure 12: Long term (90-day) cost breakdown (max. arrival rate:

500kops; max. working set size: 100 GB).

Finally, we focus on understanding cost savings that Prop

can offer relative to other approaches. We are also interested

in exploring how these savings depend on important work-

load properties (arrival rate, working set size, and popularity

distribution). Towards this, we create a variety of workloads

by picking different values for the maximum arrival rate ∈
{100kops, 500kops, 1000kops}, the maximum working set

size ∈ {10 GB, 100 GB, 500 GB}, and the Zipfian parameter

∈ {1.0, 2.0}, which yields 18 different workloads in total. In

each experiment, we use all the on-demand/spot types and all

spot markets with three-month price traces described in our

experimental setup. Figures 12 and 13 show the long term

cost breakdown and overall costs for various approaches.

We make several observations from these experiment re-

sults. First, as expected, Prop NoBackup is able to outper-

form OD+Spot Sep and ODOnly under all workload sce-

narios. It matches the costs for OD+Spot CDF, while offer-

ing better tail latency due to incurring fewer spot revocations

(recall from Section 5.2). Second, using OD+Spot Sep may

surprisingly result in costs even higher than ODOnly when

the workload is highly skewed (e.g., Zipf=2.0). This is be-

cause when the popularity distribution is highly skewed

(only a very small subset of the data is “very hot”) OD+Spot -

Sep may end up wasting too much RAM capacity on on-

demand instances and CPU/network capacity on spot in-

stances. Third, for certain workloads with less skewed pop-

ularity distribution, the cost of passive backup may not be

negligible and the tenant must carefully consider its pros and

cons. In Figure 13, the normalized cost of Prop approaches

1 for such workloads. However, as the workload becomes

more skewed (Zipf=2.0), the cost of the backup becomes

negligible. This can also be verified from Figure 12. Fourth,

when we fix the maximum working set size, the maximum

arrival rate has little impact on the normalized costs (al-

though it does affect the absolute costs); however, when

we fix the maximum arrival rate, the maximum working

set size influences the normalized costs a lot. Additionally,

workloads with higher ratios of arrival rate vs. working set

size may benefit more from Prop NoBackup than work-

loads with lower ratios. In the former scenarios CPU capac-

ity becomes the dominant resource; since the unit price for

vCPU is much higher than that of RAM (recall Table 1), the

cost savings would be higher for such workloads if Prop -

NoBackup were able to find a suitable combination of on-

demand and spot instances that reduces wastage.

6. Related Work

Spot instance for tenant procurement: A large body of

recent work has explored the use of spot instances (possi-

bly in combination with regular instances) for cost-effective

operation of a variety of workloads, e.g., delay-tolerance

batch jobs [19, 30, 38, 39, 41, 51], video streaming [13],

and (closer to our focus) for in-memory storage [50]. Var-

ious techniques have been explored for spot price model-

ing and prediction, e.g., , auto-regressive models [2, 45, 53]

or empirically measured probability distributions of key pa-

rameters [16, 24, 35, 36, 39, 40] (generally described as

“CDF-based” by us), to more complex Markovian mod-

els [30, 38, 51]. Simple regressive models might fail to pro-

vide insights on how the spot price might evolve in the long

run since it could change at a minute’s granularity. CDF-

based approaches, although offering an improved treatment

of longer term properties than regression models, usually

discard valuable temporal information about the continuity

of the spot price staying below different bid values. There-

fore, they may fail to capture well the continuity of service

availability, which is of great concern particularly for long-

lived and “stateful” applications. To our knowledge, one ex-

ception on this front is [38] wherein the “sojourn time” of a

spot instance procured via a particular bid is modeled and

predicted via a semi-Markov chain. However, tenant con-

trol based on such multidimensional models would likely

suffer scalability limitations given the large number of spot

markets and bid space - our approaches are geared towards

632

10 100 500 10 100 500 10 100 500
0

0.2

0.4

0.6

0.8

1

1.2

(b) Norm. costs (zipf=2.0)

Max. working set size (GB)

C
o

s
t

(%
)

Max. arrival
100kops 500kops 1000kops

N
o

r
m

a
li

z
e

d
 c

o
s
t
s

10 100 500 10 100 500 10 100 500
0

0.2

0.4

0.6

0.8

1

1.2

(a) Norm. costs (zipf=1.0)

Max. working set size (GB)

C
o

s
t

(%
)

Max. arrival
100kops 1000kops500kops

N
o

r
m

a
li

z
e

d
 c

o
s
t
s

Figure 13: Impact of workload properties on long term costs.

achieving a balance between these scalability concerns (for

effective use in online control) and accuracy.

Burstable instances for tenant procurement: These in-

stances have not received much attention, possibly due to

their recent introduction (ca. 2014 for the t2 family). A few

papers [20, 47] and technical blogs [18, 31] have bench-

marked their performance by comparing their capacity vari-

ability against regular instances. Close to our work, [47] fo-

cuses on “staggering” burstable instances (in time) for batch

jobs by intentionally injecting delays between successive

jobs. Our work offers another novel and compelling use case

for these instances as passive backups for in-memory caches.

A key distinguishing aspect of our work is that we exploit the

deterministic nature of CPU and network bandwidth varia-

tions which are regulated by token buckets (rather than view-

ing them as externally-controlled random phenomena).

Operating in-memory caches on public clouds: There has

been significant work on deploying in-memory data caches

on public clouds with a variety of foci, e.g., improving ap-

plication performance by addressing load imbalance [6, 14,

52], synchronization/concurrency [12], geo-replication [34,

49, 50], scalability [21, 32, 48], etc. These are all comple-

mentary to our work. Closest to our work, [50] blends spot

and on-demand instances to lower costs for in-memory stor-

age. This work considers a design space different from ours.

Some of their key ideas include (i) using spot instances for

read-only content and using on-demand instances for apply-

ing updates, and (ii) using replication across multiple spot

markets for performance and fault tolerance. Our spot price

prediction techniques might offer additional improvements

were they to replace their CDF-based approaches. Similarly,

it appears feasible to combine our ideas related to hot-cold

mixing and use of burstable instances with theirs. On the

other hand, our evaluation was restricted to a single-site set-

ting whereas geo-replication receives significant attention in

their work. Similarly, their ideas for using a small number

of on-demand instances (high availability) to speedily serve

write requests may be useful in extending the scope of our

work from its current focus on read-heavy workloads. Over-

all, we consider our papers to be highly complementary.

7. Conclusion

We studied cost-effective operation of dynamic memcached

workloads on Amazon EC2 by combining regular instances

with spot and burstable types. We proposed novel ideas

that we believed would offer improvements over the state-

of-the-art or complement it: (i) scalable data-driven spot

price prediction, (ii) intelligent hot-cold mixing among on-

demand and spot, and (iii) burstables for fast/cheap passive

backup. We implemented these ideas into a prototype sys-

tem on EC2. Our experimental evaluation suggested signif-

icant cost-savings while offering comparable or better per-

formance than baselines representing conventional wisdom.

We believe that other cloud providers are also likely to offer

similar cheap instances studied in this paper as it is a natural

way to increase their market-base, which would make our

approach serve as a more general solution to public cloud

in-memory cache applications.

Acknowledgments

We thank the anonymous reviewers and our shepherd Ada

Gavrilovska for their valuable feedback that helped us im-

prove the quality of our paper. Urgaonkar was supported,

in part, by the NSF CAREER award 0953541 and an IBM

faculty award. Kesidis was supported, in part, by a DARPA

XD3 grant, NSF NeTS grant 1526133 and a Cisco Systems

URP gift.

References

[1] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.

Workload analysis of a large-scale key-value store. In Proc.

ACM SIGMETRICS’12, 2012.

[2] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and

D. Tsafrir. Deconstructing amazon ec2 spot instance pricing. In

Proc. CloudCom, 2011.

[3] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. The

primary-backup approach. In Distributed systems (2nd Ed.),

633

pages 199–216. ACM Press/Addison-Wesley Publishing Co.,

1993.

[4] M. Burrows. The chubby lock service for loosely-coupled

distributed systems. In Proc. USENIX OSDI, 2006.

[5] L. CHEN, H. TANG, X. LUO, Y. BAI, and Z. ZHANG.

Gain-aware caching scheme based on popularity monitoring

in information-centric networking. IEICE Transactions on

Communications, 2016.

[6] Y. Cheng, A. Gupta, and A. R. Butt. An in-memory object

caching framework with adaptive load balancing. In Proc.

EuroSys, 2015.

[7] G. Cormode and S. Muthukrishnan. An improved data

stream summary: The count-min sketch and its applications.

J. Algorithms, 55(1), 2005.

[8] Ec2 boot time, 2016. http://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/ComponentsAMIs.html.

[9] P. Flajolet. Approximate counting: A detailed analysis. BIT,

25(1), 1985.

[10] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and

M. Kozuch. Autoscale: Dynamic, robust capacity management

for multi-tier data centers. ACM Trans. Comput. Syst., 30(4):14,

2012.

[11] A. Gandhi, T. Zhu, M. Harchol-Balter, and M. A. Kozuch.

Softscale: stealing opportunistically for transient scaling. In

Proc. Middleware, 2012.

[12] R. Gandhi, A. Gupta, A. Povzner, W. Belluomini, and

T. Kaldewey. Mercury: Bringing efficiency to key-value stores.

In Proc. SYSTOR, 2013.

[13] J. He, Y. Wen, J. Huang, and D. Wu. On the cost–QoE

tradeoff for cloud-based video streaming under Amazon EC2’s

pricing models. Circuits and Systems for Video Technology,

IEEE Transactions on, 2014.

[14] Y-J. Hong and M. Thottethodi. Understanding and mitigating

the impact of load imbalance in the memory caching tier. In

Proc. ACM SOCC, 2013.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:

Wait-free coordination for internet-scale systems. In Proc.

USENIX ATC, 2010.

[16] B. Javadi, R. Thulasiramy, and R. Buyya. Statistical modeling

of spot instance prices in public cloud environments. In Proc.

IEEE UCC, 2011.

[17] S. Kang, S. Lee, and Y. Ko. A recent popularity based

dynamic cache management for content centric networking.

In Proc. ICUFN’12, 2012.

[18] Patrick Kennedy. Testing new aws t2 instances with linux-

bench benchmark. https://www.servethehome.com/

testing-aws-t2-instances-linuxbench-benchmark/,

2014.

[19] S. Khatua and N. Mukherjee. Application-Centric resource

provisioning for amazon EC2 spot instances. In Euro-Par

Parallel Processing. Springer, 2013.

[20] P. Leitner and J. Scheuner. Bursting with Possibilities–An

empirical study of credit-based bursting cloud instance types. In

Proc. IEEE/ACM UCC, 2015.

[21] S. Madappa. Ephemeral volatile caching in cloud. http://

techblog.netflix.com/2012/01/ephemeral-volatile-

caching-in-cloud.html, 2012.

[22] M. Mao and M. Humphrey. A performance ctudy on the vm

startup time in the cloud. In Proc. IEEE CLOUD, 2012.

[23] A. Marathe, B. Harris, D. K. Lowenthal, B. R. de Supinski,

B Rountree, M. Schulz, and X. Yuan. A comparative study of

high-performance computing on the cloud. In Proc. HPDC’13,

2013.

[24] M. Mattess, C. Vecchiola, and R. Buyya. Managing peak

loads by leasing cloud infrastructure services from a spot market.

In Proc. IEEE HPCC, 2010.

[25] Facebook mcrouter. https://github.com/facebook/

mcrouter.

[26] Nimrod Megiddo and Dharmendra S. Modha. Arc: A self-

tuning, low overhead replacement cache. In Proc. USENIX

FAST, 2003.

[27] Memcached, 2016. https://memcached.org/.

[28] Memcached cloud. https://redislabs.com/

memcached-cloud, 2016.

[29] Memcachier. https://www.memcachier.com/, 2016.

[30] I. Menache, O. Shamir, and N. Jain. On-demand, spot, or

both: Dynamic resource allocation for executing batch jobs in

the cloud. In Proc. IEEE ICAC, 2014.

[31] A. Nhem. Cloudability. https://blog.cloudability.

com/how-cost-efficient-is-the-new-burstable-

aws-t2-large/, 2016.

[32] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,

J. Leverich, D. Mazières, S. Mitra, A. Narayanan, G. Parulkar,

M. Rosenblum, S. Rumble, E. Stratmann, and Ryan R. Stutsman.

The case for ramclouds: Scalable high-performance storage

entirely in dram. SIGOPS Oper. Syst. Rev., 43(4), 2010.

[33] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and

X. Zhu. No ”power” struggles: Coordinated multi-level power

management for the data center. In Proc. ACM ASPLOS, 2008.

[34] P. N. Shankaranarayanan, A. Sivakumar, S. Rao, and

M. Tawarmalani. Performance sensitive replication in geo-

distributed cloud datastores. In Proc. IEEE/IFIP DSN, 2014.

[35] P. Sharma, D. Irwin, and P. Shenoy. How not to bid the cloud.

In USENIX Hotcloud, 2016.

[36] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy. Spotcheck:

Designing a derivative iaas cloud on the spot market. In Proc.

Eurosys, 2015.

[37] Z. Shen, S. Subbiah, X. X. Gu, and J. Wilkes. Cloudscale:

Elastic resource scaling for multi-tenant cloud systems. In Proc.

ACM SOCC, 2011.

[38] Y. Song, M. Zafer, and K. Lee. Optimal bidding in spot

instance market. In Proc. of IEEE INFOCOM, 2012.

[39] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy.

Spoton: A batch computing service for the spot market. In Proc.

ACM SOCC, 2015.

[40] S. Subramanya, A. Rizk, and D. Irwin. Cloud spot markets

are not sustainable: The case for transient guarantees. In Proc.

USENIX Hotcloud, 2016.

634

[41] S. Tang, J. Yuan, and X-Y. Li. Towards optimal bidding

strategy for amazon ec2 cloud spot instance. In Proc. IEEE

CLOUD, 2012.

[42] G. Urdaneta, G. Pierre, and M. Van Steen. Wikipedia

workload analysis for decentralized hosting. Elsevier Computer

Networks, 53(11):1830–1845, 2009. http://www.globule.

org/publi/WWADH_comnet2009.html.

[43] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and

A. Tantawi. An analytical model for multi-tier internet services

and its applications. In Proc. ACM SIGMETRICS, 2005.

[44] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood.

Agile dynamic provisioning of multi-tier internet applications.

ACM TAAS, 3(1), 2008.

[45] R. M. Wallace, V. Turchenko, M. Sheikhalishahi,

I. Turchenko, V. Shults, J. L. Vazquez-Poletti, and L. Grandinetti.

Applications of neural-based spot market prediction for cloud

computing. In Proc. IDAACS, 2013.

[46] W. Wang, B. Li, and B. Liang. To reserve or not to reserve:

Optimal online multi-instance acquisition in iaas clouds. In

Proc. USENIX ICAC, 2013.

[47] J. Wen, L. Lu, G. Casale, and E. Smirni. Less can be more:

Micro-managing vms in amazon EC2. In Proc. IEEE CLOUD,

2015.

[48] A. Wiggins and J. Langston. Enhancing the scalability of

memcached. Intel document, unpublished, http://software. intel.

com/en-us/articles/enhancing-the-scalability-of-memcached,

2012.

[49] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.

Madhyastha. Spanstore: Cost-effective geo-replicated storage

spanning multiple cloud services. In Proc. ACM SOSP, 2013.

[50] Z. Xu, C. Stewart, N. Deng, and X. Wang. Blending on-

demand and spot instances to lower costs for in-memory storage.

In Proc. IEEE INFOCOM, 2016.

[51] M. Zafer, Y. Song, and K. Lee. Optimal bids for spot vms in

a cloud for deadline constrained jobs. In Proc. IEEE CLOUD,

2012.

[52] W. Zhang, T. Wood, and J. Hwang. Netkv: Scalable, self-

managing, load balancing as a network function. In Proc. IEEE

ICAC, 2016.

[53] H. Zhao, M. Pan, X. Liu, X. Li, and Y. Fang. Optimal resource

rental planning for elastic applications in cloud market. In Proc.

IEEE IPDPS, 2012.

